Unambiguous Evidence for Phase Transitions of Oleic Acid in Pure Liquid State by Near-Infrared Spectroscopy and Pricipan Comaonent Analysis

  • Nobuya Yokochi (Department of Chemistry, School of Science, Kwansei Gakuin University, Japan) ;
  • Makio Iwahashi (Department of Chemistry, School of Science, Kitasato University, Japan) ;
  • Masao Suzuki (Department of Chemistry, School of Science, Kitasato University, Japan) ;
  • Yukihiro Ozaki (Department of Chemistry, School of Science, Kwansei Gakuin University, Japan)
  • Published : 2000.12.01

Abstract

Temperature-dependent changes in near-infrared (NIR) spectra have been measured for oleic acid, and nonanoic acid in the pure liquid state. Particular attention has been paid to the 5400-4800 cm$\^$-1/ region where a number of combination bands appear. The NIR spectra of oleic acid show that a band at 5303 cm$\^$-1/ increases with temperature while that at 5270 cm/sup-1/ decreases. It ha been found from their second derivative spectra that these spectral changes take place stepwisely with two break points at 30 and 53$\^{C}$, which correspond to the phase transition temperatures oleic acid reported previously. Principle component analysis (PCA) has been carried out for the NIR spectra of oleic acid in the 5400-4800 cm$\^$-1/ region measured over a temperature range of 15-80$\^{C}$. core plots of the first and second principal components (PCs) show that the NIR spectra are classified into three groups; the spectra measured in the temperature range of 15-30$\^{C}$, those in the range of 31-53$\^{C}$, and those in the range of 54-80$\^{C}$. These temperature ranges correspond to those for quasi-smectic liquid crystal, disordered liquid crystal, and isotropic liquid of oleic acid in the pure liquid state. In other words, PCA provides unambiguous evidence for the phase transitions. similar studies have been carried out for petroselinic acid and nonanoic acid in the pure liquid states, but they do not show any evidence for phase transitions.

Keywords