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Abstract

 Coastal ports play an essential role in developing a country and a city. Port efficiency is an im-
portant factor affecting port trade, and the importance of port efficiency for port performance has 
been recognized in previous literature. DEA (Data Envelopment Analysis) and SFA (Stochastic Frontier 
Analysis) are widely used in this field of research. However, these two methods are limited in select-
ing input and output variables. In addition, the literature studies on Chinese coastal ports mainly focus 
on the study of port clusters in local areas, which lacks a holistic approach and generally lacks 
up-to-date data. Therefore, to fill the gap in this area of research, this paper introduces a model com-
bining principal component analysis and data envelopment analysis to analyze the operational effi-
ciency of the top 17 coastal ports in China in terms of throughput based on the most recent data 
available in 2021. This paper identifies container throughput as the output variable, and 13 second in-
dicators are selected as input variables from four primary indicators: land, capital, labor, and 
infrastructure. Four principal components were selected from 13 second indicators using PCA.After that, 
DEA (BBC) and DEA (CCR) were used to analyze the 17 ports, among which five were Shanghai, 
Ningbo-Zhoushan, Guangzhou, Xiamen, and Dongguan, respectively, DEA efficient, and the remaining 
12 ports were non-DEA efficient. Finally, improvement directions for each port are derived, and brief 
suggestions are made. This paper provides some reference value for developing and constructing 
coastal ports in China.
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Ⅰ. Introduction

1.1 Research Background and Aims

As an important strategic frontier and infra-

structure in the world trade system, the perfection 

and development level of ports and the efficiency 

of port operations significantly affect the develop-

ment of the global economy(Wayne,2006).In re-

cent years, various countries have gradually in-

creased their investment in port construction. The 

scale of ports is expanding progressively, port fa-

cilities and functions are slowly improving, and 

the service capacity and service level of ports are 

also gradually improving. For China, in the global 

supply chain integration environment, Chinese port 

enterprises have to face the competition from do-

mestic ports and bear the impact of foreign 

ports(Cullinane,2006). The development of the 

economy and the improvement of the trans-

portation environment have driven the continuous 

extension of port functions and the increasingly 

diverse service requirements of customers, forcing 

the competition between ports to become 

white-hot.Therefore, China's port industry faces 

the development problem of continuing to rapidly 

improve its ability to cope with competition. How 

the port industry can improve its development ef-

ficiency becomes increasingly critical. To cope 

with the increasingly fierce competition and obtain 

more space for development, many domestic port 

enterprises enhance the competitiveness of ports 

by building many large berths equipped with ad-

vanced machinery and facilities and developing 

the advantages of the water level and other 

measures. But the investment in this hardware of-

ten needs to achieve better results and also causes 

idle and wasted resources. Therefore, improving 

the efficiency of the port enterprise is crucial, and 

port efficiency is a comprehensive reflection of in-

put and output, which is fundamental to long-term 

development and competitiveness(Song,2014). At 

present, both domestic and foreign countries are 

actively exploring effective measures and methods 

to improve the efficiency of ports, and it is imper-

ative to objectively and practically measure the 

current situation of China's port efficiency, and 

then find ways and means to improve efficiency 

through efficiency analysis, which also plays a cru-

cial role in enhancing China's international trade 

strength and economic competitiveness. According 

to the World Trade Organization (WTO), affected 

by COVID-19, which began to sweep the world in 

2020, global trade fell by 9.2% in 2020, the largest 

decline since World War II. Global trade volumes 

did not gradually recover until 2021, when the 

epidemic receded. During the epidemic, many 

countries implemented border closures and re-

strictions, leading to disruptions in the cargo sup-

ply chain, and ports, as the core of the maritime 

supply chain, were directly impacted by port car-

go throughput, indirectly affecting port operational 

efficiency and increasing port operational 

costs.The port's efficiency represents the port's de-

velopment level and competitiveness. The effi-

ciency study helps the port enterprises objectively 

and accurately examine the current situation of 

port efficiency and their efficiency level, find their 

shortcomings and the gap between them and ex-

cellent ports, optimize the allocation of port re-

sources, and improve the management level, 

which has far-reaching significance for the 
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long-term development of the port. However, de-

spite extensive literature review, many scholars 

continue to seek greater objectivity in the selection 

of input and output variables for DEA analysis. 

Furthermore, upon reviewing a substantial body of 

literature on the efficiency of port operations in 

China, it becomes apparent that while numerous 

studies have addressed port efficiency, they pre-

dominantly focus on specific geographical areas 

rather than coastal ports as a whole. Moreover, a 

significant portion of the existing research relies 

on outdated data, highlighting the need for more 

recent data for relevant analysis. Based on this 

starting point, this paper researches the efficiency 

of Chinese coastal ports and their influencing fac-

tors based on the latest data in 2021 use PCA-DEA 

model. This paper aims to clarify the current sit-

uation of China's port efficiency, find the reasons 

for the unsatisfactory port efficiency, and propose 

several countermeasures and methods for the 

long-term sustainable development of Chinese 

ports.

1.2 Research Framework

 In the research framework, a literature review 

is conducted first. On this basis, port operation ef-

ficiency evaluation indexes are established, and 

then through the process of input and output in-

dex selection, data collection and normalization 

based on port operation efficiency evaluation 

indexes. Subsequently, the PCA model is in-

troduced to find out the most core and representa-

tive variables as input variables for the next DEA 

(CCR) and DEA (BCC) modeling operations. 

Finally, the operational efficiency of the port is 

specifically analyzed based on the results of the 

DEA model.

Fig 1. Research Framework



90 한국항만경제학회지, 제40집 제1호

Ⅱ. Theoretical Review

2.1 Port Efficiency Overview

Because the operation of a port is a vast and 

complex system involving finance, labor, facilities, 

and many other aspects, more and more scholars 

have tried to use multiple indicators to measure 

the efficiency of the port. These include the num-

ber of berths, yard area, number of cranes, num-

ber of port professionals, port throughput, and 

port operating profit. For example, 

(Tongzon,2001) compared the efficiency of inter-

national container ports with that of Australian 

ports by using data such as the number of tugs, 

cargo throughput, number of berths, yard area, 

and number of cranes as indicators. (Tongzon 

1995) used linear regression to study the impact of 

various factors on port efficiency.  However, the 

single linear regression model is too simple, ignor-

ing the mutual constraints among the elements 

and the characteristics of non-linearity that make it 

difficult to comprehensively portray port efficiency, 

not fully considering the complex non-linear rela-

tionship between port input and output indicators, 

and having a particular subjectivity in data se-

lection and function setting. Therefore, many 

scholars began to explore non-parametric analysis 

methods in subsequent port efficiency-related stud-

ies and shifted from a single use of linear re-

gression to a comprehensive evaluation study. 

Among them, the DEA model is favored by more 

and more scholars because it is used without con-

sidering the relative weights of the selected in-

dicators and, at the same time, can meet the com-

plex mechanism characteristics of multiple inputs 

and outputs in the current operation of ports. 

(Roll &Hayuth,1993) advocate using this approach 

to measure port effectiveness and demonstrate 

how to obtain relative effectiveness ratings for 

ports based on hypothetical port data. 

(Barros,2004) has analyzed the efficiency of the 

coastal ports of Greece and Portugal using the 

DEA method as an example.

Study on Port Efficiency in China

The research on port efficiency in China started 

late compared to other international scholars, but 

it is developing fast. Most scholars use several 

methods, such as index analysis, balanced score-

cards, and the DEA model in port efficiency 

assessment. (Pang & Li,2005) pioneered using the 

balanced scorecard to construct a port perform-

ance evaluation system.(Chen,2004) evaluated the 

operational efficiency of 15 listed ports using the 

DEA model.(Liu &Jiang,2012) investigated the 

competitiveness of the top ten ports in China us-

ing the DEA evaluation model with three input in-

dicators and two output indicators and proposed 

improvement countermeasures for inefficient ports. 

(Yang,2010) analyzed the comprehensive effi-

ciency, scale efficiency, and pure technical effi-

ciency of major coastal ports in Fujian Province 

through the DEA-CCR model to find out where the 

ineffectiveness lies and propose countermeasures 

for improvement. (Liu & Zheng ,1998) studied the 

influence on port efficiency using the SFA model 

with internal port infrastructure as the influencing 

factor index, and the empirical study found that 

the Number and length of port berths are the pos-

itive factors affecting port operation efficiency. 

(Huang & Yan,2004) selected port efficiency evalu-

ation indicators according to port location con-
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ditions and hardware and software facilities and 

used the fuzzy comprehensive evaluation method 

to assess the efficiency of container ports in 

Southeast Asia. (Wang & Bi,2010) chose quay 

length and the Number of berths as input in-

dicators and cargo throughput, container through-

put, and passenger throughput as output indicators 

to empirically analyze the efficiency of 30 inland 

river ports in China, and the results showed that 

inland river ports have inefficiency and a serious 

waste of port resources.

2.2 Classification of the port efficiency

Specific port efficiency can be divided into 

scale, technical, and overall efficiency.

(1) Overall efficiency of the port

The overall efficiency of the port mainly refers 

to the optimal degree that the port can achieve 

for the reasonable allocation of all resources in the 

port (including infrastructure, human and material 

resources, etc.). It measures the overall opera-

tional efficiency of the port through port input 

and output indicators(Ghiara& Tei, 2021). Overall 

efficiency is mainly related to the daily operation 

and production activities and management and op-

eration of the port, including the technical effi-

ciency related to port production and the scale ef-

ficiency related to port operation and develop-

ment, which can reflect the operation of a port 

comprehensively. In the port production and oper-

ation activities, the level of overall efficiency can 

measure the good or bad operation status of the 

port input and output to put forward constructive 

suggestions for the overall optimization of port ef-

ficiency development.

(2) Scale efficiency of the port

Port scale efficiency is the gap between the ex-

isting scale of port construction and the optimal 

scale of port efficiency. The improvement of port 

scale efficiency mainly comes from the investment 

in port expansion, which will enhance the scale 

efficiency to a certain extent(Pagano,2013). 

Generally speaking, the higher the scale efficiency 

of the port, the lower the operating cost of the 

port, and the higher the cargo throughput and 

revenue. Of course, when the scale efficiency 

reaches a certain level, the scale reward may 

reach a constant or reduced state. It can be seen 

that if the port input is unreasonable, blind invest-

ment in the expansion will lead to scale efficiency 

not being improved, thus leading to the waste of 

allocated resources, which is not conducive to the 

development of port efficiency. The port scale ef-

ficiency can be improved by increasing the auto-

mation degree of loading and unloading equip-

ment, optimizing cargo flow and storage, optimiz-

ing port management and organization, increasing 

capacity, and improving efficiency.

(3) Technical efficiency of the port

The technical efficiency of a port is the ability 

to operate all the infrastructure of the port. This 

efficiency is based purely on the level of technol-

ogy and does not consider the influence of other 

factors, such as port management and organ-

ization, (Schøyen&Odeck,2013). According to the 

production frontier surface theory, the technical ef-

ficiency of the port is the efficiency value of the 

port's overall efficiency after excluding the effi-

ciency of the port's scale when the scale reward 
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changes.  Overall, port technical efficiency directly 

relates to the port's production technology and 

management level(Tongzon,2001). When the pro-

duction equipment is advanced and the manage-

ment level is high, it significantly enhances techni-

cal efficiency. But when the production technol-

ogy is backward and cannot meet the port pro-

duction operation, it will directly lead to the waste 

of terminal resources and hinder the improvement 

of port technical efficiency, thus making the port's 

resource allocation unable to reach the optimum, 

which in turn affects the subsequent development 

of the port(Choi,2011). Improving the technical ef-

ficiency of the port requires the comprehensive 

promotion of scientific and technological in-

novation and technology application, optimization 

of the internal processes of the port, and improve-

ment of loading and unloading efficiency and car-

go transportation efficiency.

The relationship between the three efficiencies 

of the port with variable returns to scale is shown 

below:

Overall efficiency = Scale efficiency × Technical 

efficiency

Ⅲ. Methodology

3.1 Research Modelling: PCA-DEA

The research method introduced in this paper is 

a combination of the most commonly used DEA 

method in non-parametric methods and principal 

component analysis, i.e., PCA-DEA. Since many 

indicators determine the performance of the port 

operation and have a strong correlation, the PCA 

can select the most representative indicators from 

many indicators. Also, DEA can evaluate indicators 

of different scales, does not require pre-assignment 

of weights or knowledge of functional relation-

ships between them, and is very suitable for port 

enterprises with multiple inputs and outputs. By 

constructing an evaluation index system, practical 

factors are selected among several factors affecting 

port operation efficiency, and a DEA model with 

non-expected output is used to analyze and study 

the container port operation efficiency. It will be 

described in detail in the following.

3.2 Principle Component Analysis (PCA)

K. Pearson first proposed principal component 

analysis (PCA) for calculating non-random 

variables.PCA is a multivariate statistical analysis 

method that mainly uses "dimensionality reduc-

tion" to transform multiple indicators into a few 

unrelated new composite indicators, which we call 

principal components.This paper uses principal 

component analysis to select the evaluation index 

system of port operation to use fewer indicators to 

explain most of the indicators of the research 

problem. Since many factors determine the per-

formance of the port operation and have a strong 

correlation, the principal component analysis can 

select the most representative indicators from 

many indicators.Suppose we study a problem with 

j evaluation indicators, denoted as, Principal com-

ponent analysis transforms these j evaluation in-

dicators into a linear combination of j indicators to 

obtain new evaluation indicators called principal 

components, denoted as These indicators are not 

related to each other, but they can cover most of 

the information of the original indicators. The line-

ar equation is expressed as:
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Usually, different economic indicators have dif-

ferent scales, and some differ significantly in order 

of magnitude. When using PCA, the different 

scales and orders of magnitude may cause new 

problems in the results. The data should be di-

mensionless before applying the principal compo-

nent analysis to eliminate the slight influence of 

different magnitudes and orders of magnitude.

3.3 Data Envelopment Analysis (DEA)

The Data Envelopment Analysis (DEA) method 

is a new non-parametric efficiency evaluation 

method developed by American operations re-

search scientists A. Charnes, W. Cooper, and E. 

Rhodes based on relative effectiveness.DEA is one 

of the most widely used methods in port effi-

ciency research. It can evaluate indicators of dif-

ferent scales, does not require pre-assignment of 

weights or knowledge of functional relationships 

between them, is widely used in efficiency studies 

of similar decision units, and is very suitable for 

port enterprises with multiple inputs and outputs. 

(Banker,1984) argued that data envelopment analy-

sis is more effective in port performance evalua-

tion compared to mathematical planning methods. 

(Seiford&Thrall,1990) found that the efficiency 

frontier of DEA is very stable and suitable for 

small samples, which is very suitable for the effi-

ciency evaluation of port enterprises. 

(Roll&Hayuth,1993) applied the DEA method to 

the port production sector for the first time, which 

theoretically solved the problem of too single eval-

uation index. Subsequently, DEA was applied to 

port efficiency evaluation in many ways, and the 

CCR model and BBC model, as the most tradi-

tional models of DEA methods, were the most 

widely used. The CCR model, which is based on 

the theory of a completely ideal state, is the most 

basic of the DEA models and is characterized by 

the assumption of constant returns to scale. 

However, in the actual analytical environment, 

many times the situation cannot reach the ideal 

state, i.e., to reach the constant returns to scale. 

Therefore, in order to measure port efficiency 

more comprehensively, we introduce another basic 

model of DEA, the BCC model, which is charac-

terized by the assumption of constant returns to 

scale, and is closer to the actual application sce-

nario when there is a large elasticity between fac-

tors of production. In this paper,by using CCR and 

BCC model, we can measure the port efficiency 

comprehensively from both theoretical and prac-

tical aspects. The advantage of the DEA model is 

that there is no need to set explicit expressions 

between input and output indicators, which ex-

cludes certain subjective factors and makes the 

evaluation conclusion highly objective. It is easier 

to do an in-depth analysis by building a pairwise 

model with the following model:
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The CCR-DEA model refers to technical effi-

ciency (TE) with constant returns to scale. 

Technical efficiency is studied to minimize inputs 

at given outputs or maximize outputs at given 

inputs. Adding the constraint 
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CCR-DEA model is the BCC-DEA model. Denotes 

the technical efficiency (TE) under variable payoffs 

to scale. Technical efficiency measures the ability 

of a port to have output under specific input 

conditions. Technical efficiency divided by techni-

cal efficiency gives scale efficiency (SE), i.e., SE = 

TE/TE. Scale efficiency refers to the efficiency that 

comes with scale. The BCC-DEA model is as fol-

lows(Hatami&Adel,2013):
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Ⅳ. Data Collection

4.1 Port Selection

Both coastal and inland ports are important 

components of a country's ports, but among them, 

coastal ports are the most representative of the 

country's ports. The level of port efficiency and 

the development direction of a country as a whole 

can be measured by assessing the efficiency of 

coastal ports(Li,2022). Therefore, this paper will 

take China's coastal ports as the research object 

for an efficiency study.The Ministry of Transport 

of the People's Republic of China released its an-

nual government work report on January 31, 2022, 

announcing the yearly port cargo and container 

throughput data show in <Table1>.According to 

the data, the top 20 ports in terms of container 

throughput are Shanghai Port, Ningbo-Zhoushan 

Port, Shenzhen Port, Qingdao Port, Guangzhou 

Port, Tianjin Port, Xiamen Port, Suzhou Port 

(inland), Beibuwan Port, Rizhao Port, Lianyungang 

Port, Yingkou Port, Dalian Port, Yantai Port, 

Dongguan Port, Fuzhou Port, Tangshan Port, 

Foshan Port (inland), Nanjing Port (inland), Jiaxing 

Port. Suzhou Port, Foshan Port, and Nanjing Port 

are Chinese inland river ports. Since the scope of 

this paper is China's coastal ports, these three 

ports are removed, and the remaining 17 ports are 

used as research objects.



PCA-DEA 모델을 기반으로 한 중국 주요연안 항만의 운영 효율성 평가 95

Table 1. Top 20 Chinese ports in terms of container throughput in 2021

Ranking Port Throughput (million TEU)

1 Shanghai Port 4703.34

2 Ningbo-Zhoushan Port 3430.37

3 Shenzhen Port 2876.75

4 Qingdao Port 2371.19

5 Guangzhou Port 2262.88

6 Tianjin Port 2020.39

7 Xiamen Port 1204.64

8 Suzhou Port (inland) 811.72

9 Beibuwan Port 601.19

10 Yingkou Port 520.55

11 Rizhao Port 517.21

12 Lian yungang Port 503.49

13 Foshan Port (inland) 371.52

14 Dalian Port 367.28

15 Yantai Port 365.48

16 Dongguan Port 323.31

17 Fuzhou Port 345.36

18 Tangshan Port 351.49

19 Nanjing Port (inland) 311.89

20 Jiaxing Port 222.91

Data source: MOT, Port Enterprise Annual Report

4.2 Port index system setting

4.2.1 Indicator setting and data sources

When analyzing port efficiency, selecting in-

dicators for evaluating efficiency is significant. 

Whether the selection of indicators is reasonable 

determines whether the efficiency value of the 

port obtained by arithmetic is representative and 

based. The choice of indicators should be based 

on the purpose of the port efficiency evaluation 

and some characteristics of the port before select-

ing the indicator system. This paper summarizes 

the literature of scholars as a basis for the estab-

lishment of the port efficiency indicator system in 

this paper is shown in Table 2.
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Table 2. The summarised information on the DEA adoption by scholars abroad and domestic China

DMU
Primary 

Indicators

Second Indicators

Input (Numbers) Authors/Year
Output 

(Numbers)
Method

4 Australian 

ports and other 

12 container 

ports

Land; Labour; 

Capital

Number of cranes;

Number of tugs;

Number of berths;

The terminal area of 

the ports;

The amount of delay 

time ;

The Number of the 

port

authority employees

Tongzon

(2001)

Cargo 

throughput;

ship working 

rate

CCR

Additive DEA.

26 Spanish

Ports (Divide

ports into 

3groups by size)

Port activities

expenditures

Labor expenditures;

Depreciation 

expenditures;

other expenditures;

Martinez-Budri

a

(1999）

Total cargo 

moved through 

the docks;

Revenue 

obtained from 

the rent of

port facilities;

DEA-BCC

India

8 Ports

1993 to 2011

Land

No. of berths

Berth length

No. of equipment

No. of employs

Rajasekar.T & 

Deo.M. (2018)

Container 

throughput

DEA-CCR

DEA-BBC

12seaports 

including 

China’s4 

Korea’s3

and Japan's 5

Capital;Land

Import/Export by 

customs;

GDP by regions;

Berth length;

Crane numbers

Jiang and Li

(2009)
TEU throughputs DEA-based

Top100 

Container Ports 

of Cargo 

Systems

Infrastructures

Number of

container berths;

Number of quay

cranes;

Container berth

length

Dong, Li, and 

Gajpal (2019)

Throughput of 

the container 

ports

CCR-DEA

SBM-DEA

9ports 

inclouding 

China’s8 and 

Korea’s1

Land;

Infrastructures

Berth length;

Yard area;

Number of quay 

cranes;

Number of yard cranes

Zheng and 

Park (2016)

Container 

throughput

DEA-BBC

DEA-CCR

26 container 

terminals in 

Induan

Infrastructure

Draft;

Total quay length;

Quay cranes;

Yard equipment;

Yard area

K.Iyera& 

V.Nanyam

(2020)

Throughput in 

TEUs

DEA-BBC

DEA-CCR
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After summarizing the literature on the con- struction of port-related indicator systems in table 

6 major ports in 

West Africa

Land;

Infrastructures

Total quay length;

Terminal area;

Number of quayside 

cranes;

Number of yard gantry 

cranes;

Number of reach 

stackers

K. Van Dyck

（2015）

Container 

throughput
DEA Window

27 Brazilian 

ports

Land;

Infrastructures

Number of berths;

Warehousing area;

Yard area;

Shipments frequency

Wanke(2013)

Solid bulk 

throughput;

Container 

throughput

Network-DEA

14 coastal port 

enterprises

and 3 inland 

port enterprises

Labour;

Capital;

Cargo 

uniformity

Staff number;

Operational costs;

Fixed assets

Sun et 

al.(2017)

Net profit;

Cargo 

throughput;

NOx emissions

DEA-CCR

Shanghai port
Labour;

Capital

     R&D expenses;

Proportion of

technical personnel

Xu and 

Xu(2021)

Business income;

TEU
DEA-BBC

17 Container 

Terminal in 

China

Land;

Infrastructures

Gross crane 

productivity;

Cranes intensity;

Berth depth;

Berth length

Liu et 

al.(2022)

Calls;

Moves and finish

 SBM-DEA

Undesirable 

DEA     

15 container 

ports each of 

South & Middle 

Eastern and East 

Asian region

Land;

Infrastructures

Number of berths;

Number of cranes,;

Total berth length;

Berth depth

Mustafa et 

al.(2021)
TEUs

DEA-CCR

DEA-BCC

4 ports for four 

Indian Ocean 

island

countries

Land;

Infrastructures

Quay cranes;

Terminal area;

Total quay length

Dewarlo(2019) Cargo throughput DEA Window

Top18 seaports 

in Vietnam

Land;

Infrastructures

Terminal length;

Equipment;

Ship calls

Wang and 

Nguyen

(2022)

Cargo 

throughput;

TEU

DEA 

Malmquist
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2 above, it is found that the structure of the rele-

vant indicator systems is similar, with port cargo 

and container throughput as output variables. The 

input variables mainly involve four important com-

ponents, namely land, capital, labor, and 

infrastructure. For example, the number of termi-

nal berths and yard areas, regional GDP, number 

of employees, etc. Therefore, in this paper, in-

tegrating previous studies, the characteristics of the 

port itself, and the difficulty of obtaining actual 

data, four primary indicators of land, capital, la-

bor, and infrastructure were identified, and 13 sec-

ondary indicators were selected from them as in-

put indicators for PCA-DEA analysis: Staff numbe

r、Proportion of technical personnel、GDP by re-

gions、R&D expenses、Fixed assets、Operational 

costs、Depreciation expenditures、Yard area、

Total berth length、Total quay length、Number of 

berths、Number of yard gantry cranes、Number of 

reach stackers.

Staff number: The number of port staff reflects 

the labor input of the port, which directly affects 

the efficiency of port operation and service level. 

Proportion of technical personnel: The proportion 

of technical personnel reflects the technical and 

management level of the port, and a high pro-

portion of technical personnel can help to im-

prove the port's technological innovation ability 

and operational efficiency. GDP by regions: 

Regional GDP reflects the economic vitality and 

trade demand of the region in which the port is 

located, which is important for assessing the mar-

ket size and development potential of the port. 

R&D expenses: R&D expenses represent the extent 

to which ports are investing in technological in-

novation and facility improvements, which are crit-

ical to enhancing their competitiveness and opera-

tional efficiency.Fixed assets: Fixed assets are an 

important part of a port's infrastructure and are di-

rectly related to the port's operational capacity and 

service level. Operational costs: Operational costs 

reflect the efficiency of a port's operation and 

management, and low costs mean higher profit-

ability and competitive advantage. Depreciation 

expenditures: Depreciation expenditures reflect the 

useful life and value of port assets, and are im-

portant for assessing asset management and finan-

cial health.Yard area: Yard area is directly related 

to the storage and handling capacity of port cargo, 

and is one of the most important indicators for as-

sessing the operational efficiency of a port. Total 

berth length: The total berth length reflects the 

ship docking capacity of the port, which is of 

great significance in assessing the port's through-

put capacity and service level.Total quay length: 

The total quay length directly affects the ship han-

dling efficiency and service level of the port, and 

is one of the important indicators to evaluate the 

operational efficiency of the port.

These 13 indicators (show in Table3) make up 

for the shortcomings of the previous scholars in 

the selection of indicators, and can more accu-

rately and comprehensively cover the relevant fac-

tors for assessing port efficiency. Secondly, in the 

summary of output indicators, it is found that the 

most common output indicator used by the pre-

vious scholars is container throughput. Therefore, 

container throughput is identified as the output in-

dicator in this paper.
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Table 3. Port operation performance evaluation index system

DMU Input Output

Shanghai;

Ningbo-

Zhoushan;

Shenzhen;

Qingdao;

Guangzhou；

Tianjin；

Xiamen；

Beibuwan；

Rizhao;

Lianyungang;

Yingkou;

Dalian;

Yantai;

Dongguan;

Fuzhou;

Tangshan;

Jiaxing;(17)

Primary 

Indicators
Second Indicators（13） References

Container 

throughput

(Y)

Labor

Staff number(persons)(X1) Sun et al. (2017)

Proportion of technical personnel(%)(X2) Xu and Xu (2021)

Capital 

GDP by regions(100 million USD)(X3) Jiang and Li (2009)

R&D expenses (ten million )（X4) Xu and Xu(2021)

Fixed assets (100 million RMB)(X5) Sun et al.(2017)

Operational costs (100 million RMB)(X6) Sun et al. (2017)

Depreciation expenditures (ten million 

RMB)(X7)

Martinez-Budria 

(1999）

Land

Yard area (sqm)(X8) Wanke (2013)

Total berth length(m)(X9) Mustafa et al. (2021)

Total quay length (m)(X10)
KIyera and 

V.Nanyam (2020)

Infrastructure

Number of berths(X11) Mustafa et al.(2021)

Number of yard gantry cranes(X12)
G. K. van 

Dyck（2015）

Number of reach stackers(X13)
G. K. van 

Dyck（2015）

Data sources:

Port's container throughput (Y), Staff number 

(X1), Proportion of technical personnel (X2), R&D 

expenses (X4), Fixed assets (X5), Operational costs 

(X6), Depreciation expenditures (X7), Yard area 

(X8), Total Berth length (X9), Total quay length 

(X10), Number of berths (X11), Number of yard 

gantry cranes (X12), Number of The data of GDP 

by regions (X3) are collected from the official 

websites of major ports or annual reports of port 

authorities . The statistical description of the sam-

ple data in this chapter is shown in appendix. 

The GDP of Ningbo-Zhoushan Port is the sum of 

Ningbo and Zhoushan cities; the GDP of 

Beibuwan Port is the sum of Nanning, Beihai, 

Qinzhou, Fangchenggang, Yulin, and Chongzuo 

cities in the Beibuwan Economic Zone.
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Ⅴ. Case Analysis

5.1 Data Normalization

The "data normalization" is completed before the 

PCA model operation is started. Data normalization 

aims to lessen the effects of the original data's vari-

ous magnitudes and units. In this paper, based on 

"range-normalization," the normalization technique, 

the range value is set between 0 and 1.

5.2 PCA

The PCA analysis was implemented by SPSS 

software, and the data in the appendix were en-

tered into SPSS software to obtain the variance de-

composition principal component extraction analy-

sis table <Table 4>.

Table  4. KMO and Bartlett test

             KMO 0.778

Bartlett test

Approx. Chi-Square 205.314

df 78

p-value 0.000

The suitability of the study data for principal 

component analysis was first analyzed to use prin-

cipal component analysis for information enrich-

ment studies. From Table 4, it can be seen that: 

the KMO is 0.778, which is greater than 0.6, 

which meets the prerequisite requirements for 

principal component analysis, implying that the 

data can be used for principal component analysis 

research. Meanwhile, the data passed Bartlett's test 

(p<0.05), which indicates that the research data 

are suitable for principal component analysis. 

Following the operation of the PCA model, four 

principal components with the variance proportion 

of 65.492% (PC1), 9.420% (PC2), 7.537% (PC3), 

and 6.499% (PC4) are created based on the origi-

nal 13 input variables, forming the cumulative var-

iance of 88.948%(show in Table5). Their corre-

sponding weighted variance explained (weights) are:

65.492/88.948 = 73.63%; 

9.420/88.948 = 10.59%; 

7.537/88.948 = 8.47%;  

6.499/88.948 = 7.31%

Table 5. Total Variance Explained

PC
Eigenvalues % of variance

Eigen % of Variance Cum. % of Variance Eigen % of Variance Cum. % of Variance

1 8.514 65.492 65.492 8.514 65.492 65.492

2 1.225 9.420 74.913 1.225 9.420 74.913

3 0.980 7.537 82.449 0.980 7.537 82.449

4 0.845 6.499 88.948 0.845 6.499 88.948

5 0.420 3.232 92.180 - - -

6 0.331 2.544 94.724 - - -

7 0.261 2.004 96.728 - - -

8 0.151 1.162 97.890 - - -

9 0.103 0.789 98.679 - - -

10 0.076 0.585 99.264 - - -

11 0.064 0.489 99.752 - - -

12 0.019 0.145 99.897 - - -

13 0.013 0.103 100.000 - - -

Note: obtained by SPSS PCA analysis
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Table 6 shows the information extraction of the 

principal components for the research items and 

the correspondence between the principal compo-

nents and the research items. From Table 6, it can 

be seen that the communalities value of all re-

search items is higher than 0.4, which means that 

there is a strong correlation between the research 

items and the principal components, and the prin-

cipal components can extract the information 

effectively. After ensuring that the principal com-

ponents can extract most of the information of the 

research items, the correspondence between the 

principal components and the research items is 

analyzed (the absolute value of the loading co-

efficient is greater than 0.4, which means that the 

item has a correspondence with the principal com-

ponents).

Table 6. Loading Information of PCA

Attributes
   Loadings

Communalities
PC 1 PC 2 PC 3 PC 4

Staff number(X1) 0.896 0.149 -0.215 0.036 0.873

Proportion of technical personnel(X2) 0.211 0.849 0.445 0.117 0.976

GDP by regions(X3) 0.860 0.001 0.044 -0.159 0.767

R&D expenses expenses (X4) 0.734 -0.159 -0.013 0.541 0.857

Fixed assets(X5) 0.850 0.062 -0.348 0.169 0.877

Operational costs(X6) 0.783 -0.271 0.378 -0.205 0.871

Depreciation expenditures(X7) 0.898 0.163 -0.279 0.104 0.923

Yard area(X8) 0.645 -0.376 0.532 0.205 0.884

Total Berth length(X9) 0.873 -0.280 -0.197 0.067 0.884

Total quay length(X10) 0.914 0.165 -0.052 -0.151 0.888

Number of berths(X11) 0.762 -0.032 -0.048 -0.601 0.945

Number of yard gantry cranes(X12) 0.928 -0.104 0.253 0.009 0.935

Number of reach stackers(X13) 0.888 0.307 -0.000 0.003 0.884

Note: obtained by SPSS PCA analysis

In order to use the principal component scores 

for comprehensive evaluation, it is necessary to 

use the "linear combination coefficient matrix" to 

establish the relationship equation between the 

principal components and the study items (based 

on the standardized data to establish the relation-

ship expression), as shown in Table 7. On this ba-

sis, the equations for PC1, PC2, PC3 and PC4 can 

be derived as follows:

PC1Score=0.307(X1)+0.072(X2)+0.295(X3)+0.252(X4)+0.291\(X5)+0.268(X6)+0.308(X7)+0.221(X8)+0.299(X

9)+0.31(X10)+0.261(X11)+0.318(X12)+0.3049X13)
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PC2Score=0.134(X1)+0.767(X2)+0.001(X3)-0.143(X4)+0.056(X5)-0.245(X6)+0.148(X7)-0.340(X8)-0.253(X9)+

0.149(X10)-0.029(X11)-0.094(X12)+0.278(X13)

PC3Score=-0.217(X1)+0.450(X2)+0.044(X3)-0.013(X4)-0.352(X5)+0.382(X6)-0.282(X7)+0.538(X8)-0.200(X9)-

0.052(X10)-0.048(X11)+0.255(X12)-0.000(X13)

PC4Score=0.040(X1)+0.127(X2)-0.173(X3)+0.588(X4)+0.183(X5)-0.22(X6)+0.114(X7)+0.223(X8)+0.073(X9)-0

.165(X10)-0.654(X11)+0.010(X12)+0.004(X13)

Table 7.Linear combination coefficient matrix

Items
Component

Component 1 Component 2 Component 3 Component 4

staff number(persons) 0.307 0.134 -0.217 0.040

Proportion of technical personnel(%) 0.072 0.767 0.450 0.127

GDP by regions(100 million USD) 0.295 0.001 0.044 -0.173

R&D expenses (million USD) 0.252 -0.143 -0.013 0.588

Fixed assets(million USD) 0.291 0.056 -0.352 0.183

Operational costs(million USD) 0.268 -0.245 0.382 -0.223

Depreciation expenditures(million USD) 0.308 0.148 -0.282 0.114

Yard area(million sqm) 0.221 -0.340 0.538 0.223

Total Berth length(m) 0.299 -0.253 -0.200 0.073

Total quay length(m) 0.313 0.149 -0.052 -0.165

Number of berths 0.261 -0.029 -0.048 -0.654

Number of yard gantry cranes 0.318 -0.094 0.255 0.010

Number of reach stackers 0.304 0.278 -0.000 0.004

  

 
Besides, the composite score is calculated by 

accumulating the variance explained and the com-

ponent scores after multiplying them. The formula 

for the current data is:

6 5 . 4 9 2 * P C 1 S c o r e + 9 . 4 2 0 * P C 2 S c o r e + 

7.537*PC3Score + 6.499*CPC4 Score)/88.948

The final is: 0.736*PC1Score + 0.106*PC2Score 2 

+ 0.085*PC3Score + 0.073*PC4Score

Based on the reading of the relevant literature, 

it is known that the selection of principal compo-

nents of PCA is decided on the basis of the cumu-

lative information ratio of the principal compo-

nents.After sorting the absolute load factor values 

under each PC in descending order, the following 

results can be obtained:

First, PC1 has a strong correlation with several 

indicators, including Staff number (X1) and 

Number of yard gantry cranes (X12), Number of 

reach stackers (X13), Total quay length (X10), 

Depreciation expenditures (X7), etc. However, in 

general, only in port facilities-related indicators 

Number of berths (X11), Number of yard gantry 

cranes (X12), and Number of reach stackers (X13) 
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accounted for the largest share. Among them, the 

Number of yard gantry cranes(X12) has the high-

est correlation coefficient of 0.928. Therefore, PC1 

primarily plays the role of facility indicator and 

can be considered a facility factor. For PC2, the 

Proportion of technical personnel (X2) shows the 

highest correlation so PC2 can be regarded as the 

labor factor. PC3 is highly correlated with Yard 

area (X8), so PC3 can be identified as the land 

factor. Finally, PC4 presents the highest positive 

correlation in R&D expenses expenses (X4), so 

PC4 is considered the capital factor.

Because the principal components of the PCA 

analysis need to be used next for DEA analysis, a 

mathematical function to collect the Number of in-

put and output variables is also 

used(Cullinane,2006):

                                        
)( qpkn +≥

This function can be interpreted as 

follows.Where n is the Number of all DMUs, p is 

the Number of inputs, and q is the Number of 

outputs. Here, the default value of k is usually 2 

or 3.When this function is used in the scenario 

described in this paper, the Number of DMUs is 

fixed to 17, and the output variable is set to 1 

(container throughput). If the Number of inputs is 

set to 4, then the value of k is determined to be 

3, the formula calculates the result as 15, which is 

less than or equal to the value of n. If the p-value 

is 5, the result is greater than n, which is not in 

line with the logic of the formula; if the p-value is 

3, the result is 12, which is less than the value of 

n but not maximized, the results take a smaller 

value, indicating that if set to 3 input indicators, 

there is a lack of a certain overall representation. 

Therefore, a p-value is the most logical 

choice.Considering the proportion of information 

content of the original variables represented by 

the PCs and the reasonableness of the choice of 

the Number of inputs revealed by the mathemat-

ical function, and considering that the cumulative 

variance explained by the 4 PCs has reached 

88.948%, state is reached where most of the origi-

nal information can be adequately 

interpreted.Therefore, in this paper,the Number of 

inputs is set to 4 in this paper, namely "Number 

of yard gantry cranes (X12)", "Proportion of tech-

nicians (X2)" and "Yard area (X8)", "R&D ex-

penses costs (X4)".The Number of yard gantry 

cranes (X12)", "Proportion of technicians (X2)," 

and "Yard area (X8)", "R&D expenses costs (X4)" 

under facilities, labor, land, and infrastructure. 

Table 8 shows the information on DMU, outputs, 

and selected inputs by PCA on the raw data.
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Table 8. The information of DMU, outputs, and selected inputs by PCA

DMU

Inputs selected by PCA (the initial parameters of the most core mapping) Output

PC1(Infrastructure 

Factor) Number 

of yard gantry 

cranes(X12)

PC2 (Labour 

Factor)Proportio

n of technical 

personnel(X2),%

PC3(Land 

Factor)Yard 

area(X8),

million sqm

PC4(Capital 

Factor)

R&D expenses 

expenses(X4),milli

on USD

Container 

Throughput(Y),

million TEU

Shanghai port 586 0.12 778.32 20.89 4703.34

Ningbo-Zhoushan port 317 0.09 566.93 20.04 3430.37

Shenzhen port 369 0.14 704.25 22.61 2876.75

Qingdao port 243 0.14 589.97 12.04 2371.19

Guangzhou port 210 0.29 340.68 4.17 2262.88

Tianjin port 343 0.22 429.3 21.04 2020.39

Xiamen port 274 0.09 725.53 1.02 1204.64

Beibuwan port 160 0.12 590.31 1.20 601.19

Rizhao port 112 0.26 401.57 1.48 517.21

Lian yungang port 152 0.09 570.69 13.55 503.49

Yingkou port 109 0.18 185.21 0.77 520.55

Dalian port 169 0.15 172.63 0.57 367.28

Yantai port 88 0.06 208.93 12.10 365.48

Dongguan port 87 0.02 299.58 0.45 323.31

Fuzhou port 91 0.03 107.58 2.77 345.36

Tangshan port 67 0.14 371.95 8.09 351.49

Jiaxing port 36 0.01 307.48 1.18 222.91

5.3 DEA

DEA is an established statistical technique for 

measuring the relative efficiency of units for which 

simple efficiency measures are challenging to ob-

tain (Farrell &Charnes,1978).DEA is characterized 

by the ability to perform multiple inputs and out-

puts simultaneously. We will next analyze the two 

components of DEA, CCR, and BCC separately.

5.3.1 DEA(CCR)

The DEA (CCR) model investigates the efficiency 

of inputs and outputs when the payoffs of scale 

are constant. First, the overall efficiency (OE (θ)) 

is used to measure the overall efficiency of the ef-

fectiveness of the decision unit, and the value 

should be less than or equal to 1. The slack varia-

ble S+ means "how much output can be increased 

to achieve the target efficiency," and the slack var-

iable S- means "how much input can be reduced 

to achieve the target efficiency." After the CCR 
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analysis of the four PC indicators for 17 ports by 

SPSSAU, <Table 9> presents the analysis 

results.<Fig.2> shows the corresponding integrated 

efficiency line graph. The following charts show 

that only "Shanghai Port," "Ningbo-Zhoushan Port," 

"Guangzhou Port," Xiamen Port," and "Dongguan 

Port" have an overall efficiency value of 1, and 

the slack variables S+ and S- are both 0, which 

achieves DEA efficiency. The overall efficiency 

values of the remaining 12 ports are all less than 

1; thus, DEA efficiency cannot be obtained. 

Secondly, according to the significance of the 

slack variable S-, the larger the value, the more 

significant the gap between the input investment 

and the target efficiency. According to the graph, 

the most critical gap is in "Jiaxing Port," with a 

value of 199.423, followed by "Qingdao Port" and 

"Beibuwan Port," with a value of 159.997 and 

130.835, respectively. The smallest gap is 8.504 

for the "Fuzhou port.“

Table 9. DEA (CCR) Calculation Results Effectiveness Analysis

DMU
Overall Efficiency

(OE (θ))

Slackening

variables S-

Slackening

variables S+
Efficiency

Shanghai port 1.000 0.000 0.000 DEA Efficiency

Ningbo-Zhoushan port 1.000 0.000 0.000 DEA Efficiency

Guangzhou port 1.000 0.000 0.000 DEA Efficiency

Xiamen port 1.000 0.000 0.000 DEA Efficiency

Dongguan port 1.000 0.000 0.000 DEA Efficiency

Tianjin port 0.741 75.067 0.000 No DEA Efficiency

Qingdao port 0.919 159.997 0.000 No DEA Efficiency

Beibuwan port 0.638 130.835 0.000 No DEA Efficiency

Rizhao port 0.567 97.883 0.000 No DEA Efficiency

Lianyungang port 0.306 92.699 0.000 No DEA Efficiency

Yingkou port 0.961 26.848 0.000 No DEA Efficiency

Dalian port 0.840 81.247 0.000 No DEA Efficiency

Yantai port 0.384 22.306 0.000 No DEA Efficiency

Shenzhen port 0.721 33.930 0.000 No DEA Efficiency

Fuzhou port 0.522 8.504 0.000 No DEA Efficiency

Tangshan port 0.485 124.156 0.000 No DEA Efficiency

Jiaxing port 0.779 199.423 0.000 No DEA Efficiency
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Fig 2. Line chart of Overall Efficiency (OE (θ)) calculated by DEA (CCR) model

Note: obtained by SPSS DEA (CCR) analysis

5.3.2 DEA(BCC)

 The DEA (CCR) model investigates the effi-

ciency of inputs and outputs when the payoffs of 

scale are variable. First, the BCC model divides 

the overall efficiency (OE (θ)) into two types of 

efficiency: technical efficiency (TE) and scale effi-

ciency (SE). TE reflects the efficiency due to tech-

nological factors, and the value is equal to 1, in-

dicating the rational use of factors. Conversely, 

when the value is less than 1, it suggests that the 

technical efficiency of the factor has yet to be 

improved.SE measures the efficiency of scale; 

when the value is equal to 1, it means that the re-

turns to scale are constant (optimal state); when 

the value is less than 1, it means that the returns 

to scale are increasing (due to the small scale can 

be expanded to increase the benefits) if the value 

is greater than 1, it means that the returns to scale 

are decreasing (due to the large scale can be re-

duced to increase the benefits). Second, the over-

all efficiency (OE) reflects the efficiency of the de-

cision-making unit (DMU) elements. The value 

equals the multiplication of technical and scale ef-

ficiency, and the value should be less than or 

equal to 1. Also, as in the CCR analysis, the slack 

variable S- means "the target efficiency is achieved 

by reducing the number of inputs"; the slack vari-

able S+ means "the target efficiency is achieved by 

increasing the number of outputs."The TE, SE, and 

OE results calculated by the BCC model are 

shown in <Table 10>, and the corresponding line 

graphs are shown in <Fig3>. The chart shows that 

among the 17 ports, only "Shanghai Port," 

"Ningbo-Zhoushan Port," "Guangzhou Port, 

"Xiamen Port" and "Dongguan Port" are DEA effi-

cient, while the remaining 13 ports are non-DEA 

efficient. It should be noted that although the 
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scale efficiency (SE) and overall efficiency (OE) of 

the remaining 12 ports are not optimal, "Yingkou 

Port," "Dalian Port," "Fuzhou Port" and "Jiaxing 

Port" are in the optimal state of technical 

efficiency. In addition, the slack variable S- results 

for this BCC analysis are the same as those of the 

CCR model.

Table 10. DEA (BCC) Calculation Result

DMU
Technical

efficiency (TE.)

Scale efficiency

(SE (k))

Overall 

efficiency

(OE(θ))

Slackening

variables S-

Slackening

variables S+
Efficiency

Shanghai port 1.000 1.000 1.000 0.000 0.000 DEA Efficiency

Ningbo-Zhoushan 

port
1.000 1.000 1.000 0.000 0.000 DEA Efficiency

Guangzhou port 1.000 1.000 1.000 0.000 0.000 DEA Efficiency

Xiamen port 1.000 1.000 1.000 0.000 0.000 DEA Efficiency

Dongguan port 1.000 1.000 1.000 0.000 0.000 DEA Efficiency

Tianjin port 0.773 0.959 0.741 75.067 0.000 No DEA Efficiency

Qingdao port 0.925 0.994 0.919 159.997 0.000 No DEA Efficiency

Beibuwan port 0.731 0.873 0.638 130.835 0.000 No DEA Efficiency

Rizhao port 0.758 0.747 0.567 97.883 0.000 No DEA Efficiency

Lianyungang port 0.467 0.655 0.306 92.699 0.000 No DEA Efficiency

Yingkou port 1.000 0.961 0.961 26.848 0.000 No DEA Efficiency

Dalian port 1.000 0.840 0.840 81.247 0.000 No DEA Efficiency

Yantai port 0.869 0.442 0.384 22.306 0.000 No DEA Efficiency

Shenzhen port 0.726 0.992 0.721 33.930 0.000 No DEA Efficiency

Fuzhou port 1.000 0.522 0.522 8.504 0.000 No DEA Efficiency

Tangshan port 0.773 0.627 0.485 124.156 0.000 No DEA Efficiency

Jiaxing port 1.000 0.779 0.779 199.423 0.000 No DEA Efficiency
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Fig 3. Line chart of TE,SE and OE calculated by DEA(BCC)model

Note: obtained by SPSS DEA (BCC) analysis

5.4 Efficiency Result Analysis and Discussion

 In general, according to the results of 

DEA(BCC) and DEA(CCR), it is known that the 

BCC analysis additionally divides the combined ef-

ficiency into technical efficiency (TE) and scale ef-

ficiency (SE), which are analyzed separately. Thus, 

the results for the combined efficiency (OE) and 

the slack variable S- are the same, despite the dif-

ferences between the constant and variable returns 

to scale. Specifically, "Shanghai Port," 

"Ningbo-Zhoushan Port," "Guangzhou Port, 

"Xiamen Port," and "Dongguan Port" are DEA effi-

cient, while the remaining 12 ports are non-DEA 

efficient. This is because the reward of scale anal-

ysis (ROS) and the input redundancy analysis will 

give a more precise and detailed picture of port 

efficiency. Therefore, to further analyze the port 

efficiency, we will discuss these two analyses next.

5.4.1 Return-to-Scale (ROS)

 Return-to-Scale (ROS) refers to the extent to 

which an increase in factors of production (e.g., 

labor and capital) results in a corresponding rise 

in output (e.g., goods and services). In other 

words, ROS measures the extent to which an in-

crease in factors of production affects output. 

Since port operations are by nature dynamic and 

complex (Valentine&Gray, 2001), it isn't easy to 

assume that ROS will always remain constant 

when assessing the actual operational efficiency of 

a port. Therefore, the discussion of ROS in this 

paper is based on the variable case, according to 

the BBC model assuming variable payoffs to scale 

and regarding the payoff coefficient of scale 

(lambda value) to investigate the payoffs to scale. 

There are three situations: firstly, the payoff co-

efficient is equal to 1, which means that the re-

turns to scale are constant (optimal); secondly, the 
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payoff coefficient is less than 1, which means that 

the returns to scale are increasing (due to small 

scale, the benefits of increasing scale can be in-

creased); and finally, the payoff coefficient is 

greater than 1, which means that the returns to 

scale are decreasing (due to large scale, the bene-

fits of increasing scale can be reduced).According 

to <Table 11>, "Shanghai port"、"Ningbo-Zhoushan 

port"、"Guangzhou port "、"Shanghai port"、

"Ningbo-Zhoushan port"、"Guangzhou port"、

"Xiamen port"、"Dongguan port" has a scale pay-

off coefficient of 1, and the returns to scale are 

unchanged. The remaining 12 ports have scale 

payoff coefficients of less than one and increasing 

returns to scale. In other words, except for the 

five ports with constant returns to the scale men-

tioned above, the remaining 12 ports must be ex-

panded to improve the target operating efficiency.

Table 11. ROS type for 17 Ports in China

DMU ROS Coefficient Type

Shanghai port 1.000 Constant

Ningbo-Zhoushan port 1.000 Constant

Guangzhou port 1.000 Constant

Xiamen port 1.000 Constant

Dongguan port 1.000 Constant

Tianjin port 0.751 Increase

Qingdao port 0.780 Increase

Beibuwan port 0.399 Increase

Rizhao port 0.273 Increase

Lianyungang port 0.147 Increase

Yingkou port 0.316 Increase

Dalian port 0.239 Increase

Yantai port 0.107 Increase

Shenzhen port 0.858 Increase

Fuzhou port 0.093 Increase

Tangshan port 0.102 Increase

Jiaxing port 0.056 Increase

Note: obtained by SPSS DEA (ROS) analysis

5.4.2 Investment Redundancy Rate

 The BCC and CCR models were used to ana-

lyze the operational efficiency of 17 Chinese coast-

al ports. The slack variable S- results are used to 

determine the direction of improvement for the 

ports because the meaning of the slack variable S- 

is "How much input reduction is needed to ach-
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ieve the target efficiency."In other words, the port 

is not achieving its target efficiency due to 

"over-investment". This is because "over-invest-

ment" means that the port is over-invested and 

wasteful in some aspects of its operations.Next, 

Investment redundancy rate is introduced to find 

better ways to reduce inputs. Because the invest-

ment redundancy rate analysis can give details of 

the specific amount of input reduction needed to 

achieve the DEA target efficiency in each of the 

four input indicators for each of the 12 ports that 

did not achieve DEA efficiency because the value 

of the slack variable S- was greater than 

0.Investment redundancy rate refers to the ratio of 

'over-investment' to 'invested,' where a more sig-

nificant value means more 'over-investment.'<Table 

12> is the slack variable S- and investment re-

dundancy rate data for 17 ports. In this paper, the 

Proportion of technical personnel (X2), R&D ex-

penses expenses (X4), Yard area (X8), and 

Number of yard gantry cranes (X12) are four input 

indicators.First, in terms of labor factor, the invest-

ment redundancy rate is 8.8% for Shenzhen Port, 

14.9% for Beibu Gulf Port, 33.5% for Rizhao Port, 

15.9% for Lianyungang Port, 65.6% for Yingkou 

Port, 22.4% for Yantai Port, 59.7% for Dalian Port, 

and 41.9% for Tangshan Port. The eight ports 

need to reduce the corresponding input units of 

Shenzhen port 0.012, Beibuwan port 0.018, Rizhao 

port 0.087, Lianyungang port 0.014, Yingkou port 

0.118, Dalian port 0.09, Yantai port 0.013, 

Tangshan port 0.059 to achieve the desired opera-

tional efficiency. Regarding the capital factor, the 

investment redundancy rate is 38.5% for Tianjin 

Port, 8.9% for Lianyungang Port, 20.7% for Yantai 

Port, and 20.1% for Tangshan Port. The four ports 

must reduce the corresponding input units to 

8.099 for Tianjin Port, 1.206 for Lianyungang Port, 

2.509 for Yantai Port, and 1.869 for Tangshan 

Port, respectively, to achieve the desired opera-

tional efficiency. In terms of land factor, the in-

vestment redundancy rate is 4.8% for Shenzhen 

Port, 27.1% for Qingdao Port, 22.2% for Beibuwan 

Port, 22.4% for Rizhao Port, 16% for Lianyungang 

Port, 9.5% for Yantai Port, 32.9% for Tangshan 

Port, and 64.9% for Jiaxing Port. The eight ports 

need to reduce the corresponding input units of 

Shenzhen Port 33.918, Qingdao Port 159.997, 

Beibuwan Port 130.817, Rizhao Port 97.796, 

Lianyungang Port 91.478, Yantai Port 19.784, 

Tangshan Port 122.229, Jiaxing Port 199.423. 

Regarding facility factors, the investment re-

dundancy rate is 19.5% for Tianjin Port, 24.5% for 

Yingkou Port, 48% for Dalian Port, and 9.3% for 

Fuzhou Port. Then these four ports should reduce 

the corresponding input units by 66.968 for 

Tianjin port, 26.73 for Yingkou port, 81.158 for 

Dalian port, and 8.504 for Fuzhou port, 

respectively. Finally, by adding up all the input el-

ements of the same port, the results are as fol-

lows: Shenzhen port needs to reduce the corre-

sponding input by 33.93, Tianjin port by 75.067, 

Qingdao port by 159.997, Beibuwan port by 

130.835, Rizhao port by 97.883, Lianyungang port 

by 92.699, Yingkou port by 26.848, Dalian port by 

81.247, Yantai port by 22.306, Fuzhou port by 

8.504, Tangshan port by 124.156, Jiaxing port by 

199.423. The Port of Yantai is 22.306, the Port of 

Fuzhou is 8.504, the Port of Tangshan is 124.156, 

and the Port of Jiaxing is 199.423.
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Table 12. Date on Slack Variable S- and Input Redundancy rate

DMU

Slack Variable S- Investment Redundancy Rate

Proportion of 

technical 

personnel(X2)

R&D 

expenses 

(X4)

Yard 

area 

(X8)

Number of 

yard gantry 

cranes(X12)

Sum

Proportion of 

technical

personnel(X2)

R&D 

expenses 

(X4)

Yard 

area

(X8)

Number of yard 

gantry cranes

(X12)

Shanghai port 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Ningbo-

Zhoushan port
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Guangzhou port 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Xiamen port 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Dongguan port 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Tianjin port 0.000 8.099 0.000 66.968 75.067 0.000 0.385 00 0.195

Qingdao port 0.000 0.000 159.997 0.000
159.99

7
0.000 0.000 0.271 0.000

Beibuwan port 0.018 0.000 130.817 0.000
130.83

5
0.149 0.000 0.222 0.000

Rizhao port 0.087 0.000 97.796 0.000 97.883 0.335 0.000 0.244 0.000

Lian yungang

port
0.014 1.206 91.478 0.000 92.699 0.159 0.089 0.160 0.000

Yingkou port 0.118 0.000 0.000 26.730 26.848 0.656 0.000 0.000 0.245

Dalian port 0.090 0.000 0.000 81.158 81.247 0.597 0.000 0.000 0.480

Yantai port 0.013 2.509 19.784 0.000 22.306 0.224 0.207 0.095 0.000

Shenzhen port 0.012 0.000 33.918 0.000 33.930 0.088 0.000 0.048 0.000

Fuzhou port 0.000 0.000 0.000 8.504 8.504 0.000 0.000 0.000 0.093

Tangshan port 0.059 1.869 122.229 0.000
124.15

6
0.419 0.231 0.329 0.000

Jiaxing port 0.000 0.000 199.423 0.000
199.42

3
0.000 0.000 0.649 0.000

Note: obtained by SPSSAU DEA (Investment Redundancy) analysis

Ⅵ. Conclusions and Recommendations

6.1 Conclusions

With the development of economic global-

ization, ports play an increasingly critical role in 

the global flow of goods and trade between 

countries. The port is a complex system essential 

to the international logistics network. Although 

China's ports have been developing rapidly in re-

cent years, especially the ports of Shanghai and 

Ningbo-Zhoushan, which have been occupying the 

top three positions of global ports for years, there 

are still many seaports along China's coast, and 
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the overall level of China's ports still has much 

room for improvement. The operational efficiency 

of ports directly indicates competitiveness. It is 

one of the critical factors affecting port perform-

ance and competitiveness and has also attracted 

the attention of many scholars. Many scholars use 

two of the most common frontier models, DEA 

and SFA, because of their practicality in terms of 

efficiency. However, after summarizing much-re-

lated literature, most scholars still need more ob-

jectivity in selecting input and output variables in 

DEA. Secondly, after translating a large amount of 

literature on port operation efficiency in China, it 

was found that although there are many port effi-

ciency-related studies, they mainly focus on ana-

lyzing port efficiency in a single or small area. 

Only a few studies specifically focus on the opera-

tional efficiency of coastal ports. In addition, a 

large amount of the research literature has old da-

ta, and there needs to be more literature that uses 

data from recent years for relevant analysis. 

Therefore, to fill the research gap in this area, this 

paper introduces a combination of PCA and DEA 

methods to analyze the suitable port efficiency us-

ing the latest data from 2021 and the top 17 coast-

al ports in China regarding container throughput. 

When conducting PCA-DEA analysis, the object 

needs to be selected first. In this paper, 17 ports 

along the coast of China are used as DMUs for 

analysis. Secondly, input and output indicators 

need to be selected, and container throughput is 

identified as the output indicator in this paper. In 

terms of input indicators, this paper summarizes 

the literature of several related studies, concludes 

four major scopes, namely, labor, land, capital, 

and infrastructure, and selects 13 indicators around 

these four scopes.

The 13 indicators were analyzed by principal 

component analysis. Four core input indicators 

were chosen from them. "Proportion of technical 

personnel (X2)", "R&D expenses (X4)", "Yard area 

(X8)", and "Number of yard gantry cranes (X12)" 

are the four indicators that are loaded with the 

highest information variables, representing labor, 

capital, land, and infrastructure, respectively. After 

identifying the core indicators, we moved on to 

the DEA (BBC) and DEA (CCR) analyses. The 

overall efficiency (OE) results were consistent de-

spite the constant and variable payoffs of scale for 

BBC and CCR, respectively. From the results of 

both analyses, it is jointly shown that five ports—
Shanghai Port, Ningbo-Zhoushan Port, Guangzhou 

Port, Xiamen Port, and Dongguan Port are DEA 

effective. At the same time, the lambda value is 

equal to 1, which keeps the ROS constant. In con-

trast, the remaining 12 ports are non-DEA efficient 

with lambda values less than 1, maintaining the 

ROS increasing state, and need to increase effi-

ciency by scaling up. In addition, the slack varia-

ble (S-) and the investment redundancy rate can 

be used to derive how much input reduction is 

needed to achieve the desired efficiency for the 

remaining 12 non-DEA efficient ports. This is be-

cause according to the definition of slack variable 

(S-), the target efficiency is achieved when the 

value of the slack variable (S-) is 0; when the val-

ue of the slack variable (S-) is greater than 0, it 

means that the port has excess inputs and needs 

to reduce the inputs to achieve the target 

efficiency. Further, the concept of input re-

dundancy is introduced to explain the specific in-

dicators that need to be reduced when the port 
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needs to reduce inputs to achieve the target 

efficiency. Finally, the redundancy analysis shows 

that except for the five ports that achieve DEA, 

the remaining 12 ports need to reduce the inputs 

in the four input indicators to different degrees to 

achieve the target efficiency. Input redundancy 

provides a direction for improvement in port 

efficiency. This paper analyzes port efficiency 

through a port operation efficiency evaluation 

model with a hybrid PCA-DEA approach. It pro-

poses improvement directions for developing 

China's coastal ports, providing some guidance for 

developing China's port industry.

In a related study with similar results, (Cullinane 

&Wang,2006) used DEA to analyze sample data 

from the world's top container ports and found 

that there was a significant amount of waste in 

container port production, while the sample ports 

showed a mixture of diminishing, increasing, and 

constant returns to scale in terms of efficiency. 

(Cullinane&Wang,2010) applied DEA analysis to 25 

major container ports and revealed considerable 

waste in the production of container ports. It also 

provides a basis for assessing the competitiveness 

of container ports, benchmarking best practices, 

and identifying specific sources or causes of 

inefficiencies. Both studies and this paper found 

significant waste in the production of the ports, 

thus affecting the ports' ability to achieve their tar-

get efficiencies. At the same time, port efficiency 

shows three states of decreasing, increasing, and 

constant revenue size, on the basis of which this 

paper analyzes the directions for improvement. 

(Pjevevi, 2012) measured and analyzed the effi-

ciency of ports on the Danube River through DEA 

methodology to identify sources of inefficiency 

and to develop recommendations to improve the 

services of these ports and their operations. Total 

warehouse area, quay length, number of cranes, 

and port throughput were found to be measures 

of port efficiency in Serbian river ports. This pa-

per uses PCA analysis to identify similar indicators 

that affect the efficiency of each port, namely, the 

proportion of technical personnel, R&D expenses, 

yard area, Number of yard gantry cranes, which 

are derived from four different dimensions, a more 

comprehensive The four indicators are from four 

different dimensions, which is a more compre-

hensive measure of port efficiency.

However, this paper still has limitations in some 

aspects. Firstly, this paper only uses two models, 

DEA (BCC) and DEA (CCR), and does not use 

other methods, such as Malmquist, that can sam-

ple different years, thus lacking inter-decade com-

parisons and change analysis. Secondly, this paper 

only studies the main 17 seaports along the coast 

of China, which has a long coastline and many 

ports distributed along the coast. The sample size 

selected in this paper needs to be bigger, which 

may affect the model's accuracy. Third, the impact 

of COVID-19 leads to the possibility of varying de-

grees of fluctuations in the various conditions af-

fecting the efficiency of port operations, which in 

turn affects the measurement of port efficiency. 

However, port operations consist of a large, dy-

namic system that requires the cooperation of 

many parties to accomplish. The effect of 

COVID-19 on port operational efficiency can hard-

ly be reflected uniformly in all aspects. Due to the 

limitations of the study period and data collection, 

this paper is unable to fully reflect the impact of 

the 2021 epidemic on port efficiency. Although 



114 한국항만경제학회지, 제40집 제1호

the study in this paper was not able to cover the 

impact of the 2021 epidemic, it recognizes the im-

portance of this factor to a full understanding of 

port efficiency and encourages future studies to 

explore and analyze this aspect in greater depth. 

Fourth, the study in this paper covers 17 seaports 

along the coast of China, with a large number of 

ports and detailed data on specific indicators. The 

dataset mainly comes from reliable official data 

and public information, and there are different de-

grees of difficulties in obtaining the data due to 

the limitations of China's relevant policies. To en-

sure the authenticity of the data, the latest data 

are only updated to 2021.

6.2 Recommendations

According to the above analysis, among the 17 

ports, except for five ports, namely Shanghai Port, 

Ningbo-Zhoushan Port, Guangzhou Port, Xiamen 

Port, and Dongguan Port, the remaining 12 ports 

have room for improvement in port operation 

efficiency. Therefore, because of the above analy-

sis, some efficiency improvement suggestions are 

made for these ports: 1. Each port should increase 

the construction of route flights, promote the de-

velopment of foreign trade business based on the 

national development strategy, and vigorously de-

velop domestic trade business. 2. Insist on in-

novation as the core, enhance the development of 

new dynamic energy, improve the degree of com-

prehensive intelligence, and expand the depth and 

breadth of port terminal intelligence, digitalization, 

and automation. 3. Dalian and Yingkou ports 

need to improve port operations and deci-

sion-making. Strengthen the connection between 

port clusters, improve the overall integrated tech-

nical efficiency, and enhance port construction. 

Fuzhou Port, Tianjin Port, Yingkou Port, and 

Dalian Port should complete the renewal of port 

facilities and equipment, berth renovation, and 

merger as soon as possible to improve the techni-

cal efficiency of the ports. At the same time, it is 

suggested that the ports not rely on more re-

sources for blind expansion but instead use exist-

ing resources to consolidate the foundation. For 

Tangshan Port, build an intelligent port and im-

prove port technology by accelerating the renewal 

of facilities and equipment and creating a big data 

platform. Shenzhen Port, Beibuwan Port, Rizhao 

Port, and Lianyungang Port should make more ap-

propriate deployments of technical personnel, 

maximize the rational use of scientific and techno-

logical resources, and improve comprehensive 

technical efficiency.
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국문요약

국내 운송을 담당하는 연안항들은 국가와 도시의 발전에 필수적인 역할을 하고 있다. 항만 효율성은 
항만 경쟁력을 확보하기 위한 중요한 요소로, 이에 대한 연구는 기존 문헌에서 지속적으로 진행되었다. 
중국의 경우 주로 지방의 항만 클러스터에 대한 연구에 초점을 맞추고 있는데, 미시적 관점에서만 접
근하고 있으며, 최신 자료도 부재한 상황이다. 따라서 본 연구에서는 최신 자료를 활용하여 중국 상위 
17개 연안항의 운영 효율성을 종합적으로 분석하고자 한다. 본 연구에서는 컨테이너 처리량을 산출변
수로 선정하고, 크게 토지, 자본, 노동, 인프라에 속하는 13개 지표로부터 PCA(Principal Component 
Analysis) 분석을 통해 4개의 투입변수를 최종 선정하였다.그런 다음 17개 항구의 운영 효율성을 DEA
(데이터 포위 분석)로 분석했습니다. 분석 결과, 상하이, 닝보-저우산, 광저우, 샤먼, 둥관의 5개 항만이 
효율적인 반면, 나머지 12개의 항만은 상대적으로 비효율적인 것으로 나타났다. 본 연구는 중국의 연
안항을 보다 거시적 관점에서 비교·분석한 것으로 이를 통해 상대적 비교가 가능하며, 향후 항만의 
발전 전략 및 정책 수립을 위한 기초자료로 활용할 수 있을 것이다.

주제어: 항만 운영, 효율성, 중국 연안항, PCA, DEA 


