Owolabi, Abdulhameed B.;Lee, Jong W;Jayasekara, Shanika N.;Lee, Hyun W.
Journal of The Korean Society of Agricultural Engineers
/
v.59
no.5
/
pp.93-99
/
2017
A model was developed using Artificial Neural Networks (ANNs) based on Principal Component Analysis (PCA), to accurately predict the air humidity inside an experimental greenhouse located in Daegu (latitude $35.53^{\circ}N$, longitude $128.36^{\circ}E$, and altitude 48 m), South Korea. The weather parameters, air temperature, relative humidity, solar radiation, and carbon dioxide inside and outside the greenhouse were monitored and measured by mounted sensors. Through the PCA of the data samples, three main components were used as the input data, and the measured inside humidity was used as the output data for the ALYUDA forecaster software of the ANN model. The Nash-Sutcliff Model Efficiency Coefficient (NSE) was used to analyze the difference between the experimental and the simulated results, in order to determine the predictive power of the ANN software. The results obtained revealed the variables that affect the inside air humidity through a sensitivity analysis graph. The measured humidity agreed well with the predicted humidity, which signifies that the model has a very high accuracy and can be used for predictions based on the computed $R^2$ and NSE values for the training and validation samples.
An improved principal component analysis (PCA) method is applied for sensor fault detection and isolation (FDI) in a nuclear power plant (NPP) in this paper. Data pre-processing and false alarm reducing methods are combined with general PCA method to improve the model performance in practice. In data pre-processing, singular points and random fluctuations in the original data are eliminated with various techniques respectively. In fault detecting, a statistics-based method is proposed to reduce the false alarms of $T^2$ and Q statistics. Finally, the effects of the proposed data pre-processing and false alarm reducing techniques are evaluated with sensor measurements from a real NPP. They are proved to be greatly beneficial to the improvement on the reliability and stability of PCA model. Meanwhile various sensor faults are imposed to normal measurements to test the FDI ability of the PCA model. Simulation results show that the proposed PCA model presents favorable performance on the FDI of sensors no matter with major or small failures.
얼굴 인식에서 가장 많이 사용되고 있는 PCA(Principal Component Analysis)는 고차원의 얼굴 데이터를 낮은 차원으로 표현할 수 있다는 장점이 있다. LDA(Linear Discriminant Analysis)는 서로 다른 데이터를 잘 분리할 수 있으며, 얼굴 인식에서 우수한 성능을 보인다. 본 연구에서는 서로의 장점을 결합하여 PCA와 LDA를 혼합, 적용하였다. 고차원의 얼굴데이터를 PCA로 차원 축소한 후 LDA를 이용해 더욱 효과적인 분류가 되어 얼굴 인식률을 향상시킨다. 인식 모듈로는 pRBFNN(Polynomial Based Radial Basis Function Neural Networks) 모델을 구축하여 고차원 패턴인식 문제에 대한 해결책을 제시하고자 한다. 그리고 제안된 패턴분류기는 얼굴 데이터를 사용하여 성능을 확인한다.
Journal of Institute of Control, Robotics and Systems
/
v.11
no.2
/
pp.109-116
/
2005
In this paper, we investigate the visual and quantitative analysis at the same time with an electronic tongue(e-tongue) system using an array of ISE(ion-selective electrode). We apply the FCM(fuzzy c-means) algorithm combined with PCA(principal component analysis), which can be reduced multi-dimensional data to third-dimensional data, to classify data patterns detected by E-Tongue system. The proposed technique can be designed to solve the cluster centers and membership grade of patterns combined with the output results obtained by PCA method. According to the proposed technique, the membership grade of unknown pattern, which does not shown previously can be determined and analyzed visually. Conclusionally, the relationship between the standard patterns and unknown pattern can be easily analyzed. Throughout the experimental trials, the proposed technique has been confirmed using developed E-Tongue system.
Dang, Thien-Binh;Vo, Vi Van;Le, Duc-Tai;Kim, Moonseong;Choo, Hyunseung
Annual Conference of KIPS
/
2020.05a
/
pp.69-71
/
2020
Principal Component Analysis (PCA) is an effective data analysis technique which is commonly used for fault detection on collected data of Wireless Sensor Networks (WSN), However, applying PCA on the whole data make the detection performance low. In this paper, we propose Joint PCA and Adaptive Threshold for Fault Detection (JPATAD). Experimental results on a real dataset show a remarkably higher performance of JPATAD comparing to conventional PCA model in detection of noise which is a popular fault in collected data of sensors.
Since late 1970, methods of influence or sensitivity analysis for detecting influential observations have been studied not only in regression and related methods but also in various multivariate methods. If results of multivariate analyses sometimes depend heavily on a small number of observations, we should be very careful to draw a conclusion. Similar phenomena may also occur in the case of incomplete data. In this research we try to study such influential observations in multivariate statistical analysis of incomplete data. Case of principal component analysis is studied with a numerical example.
Kim, Joeng-Do;Kim, Dong-Jin;Byun, Hyung-Gi;Ham, Yu-Kyung;Jung, Woo-Suk;Choo, Dae-Won
Proceedings of the KIEE Conference
/
2005.10b
/
pp.133-137
/
2005
In this paper, we investigate visual and quantitative analysis of different tastes in the liquids using multi-array chemical sensor (MACS) based on the ion-selective electrodes (ISEs), which is so called the electronic tongue (E-Tongue) system. We apply the Fuzzy C-means (FCM) algorithm combined with Principal Component Analysis (PCA), which can be used to reduce multi-dimensional data to two- or three-dimensional data, to classify visually data patterns detected by E-Tongue system. The proposed technique can be determined the cluster centers and membership grade of patterns through the unsupervised way. The membership grade of an unknown pattern, which does not shown previously, can be visually and analytically determined. Throughout the experimental trails, the E-tongue system combined with the proposed algorithms is demonstrated robust performance for visual and quantitative analysis for different tastes in the liquids.
Sharma, Sushil K.;Johri, Bhavdish Narayan;Ramesh, Aketi;Joshi, Om Prakash;Sai Prasad, S.V.
Journal of Microbiology and Biotechnology
/
v.21
no.11
/
pp.1127-1142
/
2011
The aim of this investigation was to select effective Pseudomonas sp. strains that can enhance the productivity of soybean-wheat cropping systems in Vertisols of Central India. Out of 13 strains of Pseudomonas species tested in vitro, only five strains displayed plant growth-promoting (PGP) properties. All the strains significantly increased soil enzyme activities, except acid phosphatase, total system productivity, and nutrient uptake in field evaluation; soil nutrient status was not significantly influenced. Available data indicated that six strains were better than the others. Principal component analysis (PCA) coupled cluster analysis of yield and nutrient data separated these strains into five distinct clusters with only two effective strains, GRP3 and HHRE81 in cluster IV. In spite of single cluster formation by strains GRP3 and HHRE81, they were diverse owing to greater intracluster distance (4.42) between each other. These results suggest that the GRP3 and HHRE81 strains may be used to increase the productivity efficiency of soybean-wheat cropping systems in Vertisols of Central India. Moreover, the PCA coupled cluster analysis tool may help in the selection of other such strains.
Hae-In Jeon;Joon-Ho Yoon;Jeong Hoon Kim;Dong-Wook Kim;Namsik Oh;Young-Bum Park
The Journal of Advanced Prosthodontics
/
v.16
no.2
/
pp.67-76
/
2024
PURPOSE. This study aims to assess and predict lifespan of dental prostheses using newly developed Korean Association of Prosthodontics (KAP) criteria through a large-scale, multi-institutional survey. MATERIALS AND METHODS. Survey was conducted including 16 institutions. Cox proportional hazards model and principal component analysis (PCA) were used to find out relevant factors and predict life expectancy. RESULTS. 1,703 fixed and 815 removable prostheses data were collected and evaluated. Statistically significant factors in fixed prosthesis failure were plaque index and material type, with a median survival of 10 to 18 years and 14 to 20 years each. In removable prosthesis, factors were national health insurance coverage, antagonist type, and prosthesis type (complete or partial denture), with median survival of 10 to 13 years, 11 to 14 years, and 10 to 15 years each. For still-usable prostheses, PCA analysis predicted an additional 3 years in fixed and 4.8 years in removable prosthesis. CONCLUSION. Life expectancy of a prosthesis differed significantly by factors mostly controllable either by dentist or a patient. Overall life expectancy was shown to be longer than previous research.
Phenotypic characterization and body biometric in 13 traits (height at withers, body length, chest girth, paunch girth, ear length, tail length, length of tail up to switch, face length, face width, horn length, circumference of horn at base, distances between pin bone and hip bone) were recorded in 233 adult Gojri buffaloes from Punjab and Himachal Pradesh states of India. Traits were analysed by using varimax rotated principal component analysis (PCA) with Kaiser Normalization to explain body conformation. PCA revealed four components which explained about 70.9% of the total variation. First component described the general body conformation and explained 31.5% of total variation. It was represented by significant positive high loading of height at wither, body length, heart girth, face length and face width. The communality ranged from 0.83 (hip bone distance) to 0.45 (horn length) and unique factors ranged from 0.16 to 0.55 for all these 13 different biometric traits. Present study suggests that first principal component can be used in the evaluation and comparison of body conformation in buffaloes and thus provides an opportunity to distinguish between early and late maturing to adult, based on a small group of biometric traits to explain body conformation in adult buffaloes.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.