Abstract
Since late 1970, methods of influence or sensitivity analysis for detecting influential observations have been studied not only in regression and related methods but also in various multivariate methods. If results of multivariate analyses sometimes depend heavily on a small number of observations, we should be very careful to draw a conclusion. Similar phenomena may also occur in the case of incomplete data. In this research we try to study such influential observations in multivariate statistical analysis of incomplete data. Case of principal component analysis is studied with a numerical example.
1970년대 후반부터 영향력이 있는 관측값을 검출하기 위해서 회귀분석을 포함한 다양한 다변량 해석법에서의 영향분석 및 감도분석에 대한 연구가 진행되어 왔다. 결손 값이 포함된 불완전한 자료에 관해서도 이러한 연구가 필요하다. 이와 관련하여 Kim et al.(1998)등은 평균벡터와 분산공분산행렬에 대한 최우추정값에 초점을 두고 불완전한 자료에 대한 다변량 해석법에서의 감도분석에 관한 방법적 연구를 다루었다. Kim et al.(1998)에서는 Cook’s D 통계량을 이용하였으나, 본 논문에서는 결손값이 있는 다변량 자료에 대해서 주성분을 이용하여 영향력이 있는 관측값을 검출하는 방법에 대해서 살펴보았다. 이 때, 결손값은 EM알고리즘에 의해 대치하여 PCA 통계량을 유도하였다.