• Title/Summary/Keyword: PCA(Principal Component Analysis

Search Result 1,243, Processing Time 0.032 seconds

Statistical Analysis of Water Flow and Water Quality Data in the Imjin River Basin for Total Pollutant Load Management (임진강 유역 오염물질 총량관리를 위한 유량-수질 자료의 통계분석)

  • Cho, Yong-Chul;Choi, Hyeon-Mi;Lee, Young Joon;Ryu, Ingu;Lee, Myung-Gu;Gu, Donghoi;Choi, Kyungwan;Yu, Soonju
    • Journal of Environmental Impact Assessment
    • /
    • v.27 no.4
    • /
    • pp.353-366
    • /
    • 2018
  • The purpose of this study was assessment the quality of water by using the statistical analysis technique of the Water flow and water quality from January 2012 to December 2016 at the unit basin for total pollutant load management system (TPLMS) in the Imjin River. Water flow and water quality were monitored at an average of 8 day intervals, 11 parameters were used for correlation analysis, principal component analysis (PCA), factor analysis (FA), and cluster analysis (CA). The Hierarchical CA was classified into three according to the change of space, such as natural rivers, urban rivers, point with large influence of point pollution source, it was found that the type of contamination source the similarity of water quality affected the classification of cluster. Using one-way analysis of variance (ANOVA) and post-hoc Analysis, there were statistically significant differences between mean values among the clusters. Correlation analysis showed the correlation coefficient between $COD_{Mn}$ and TOC was 0.951 (p<0.01) and the correlation was statistically significantly higher. According to the result PCA and FA, 3 principal components can explaining 72% of the total variations in water quality characteristics and main factor was EC, $BOD_5$, $COD_{Mn}$, TN, TP and TOC indirect indicators of organic matter and nutrients were influenced. This study presented the regression equation obtained by applying the factor scores to the multiple linear regression analysis and concluded that the management Indirect indicators of organic matter and nutrients is important for water quality management in the Imjin River basin.

Comparison of Computer and Human Face Recognition According to Facial Components

  • Nam, Hyun-Ha;Kang, Byung-Jun;Park, Kang-Ryoung
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.1
    • /
    • pp.40-50
    • /
    • 2012
  • Face recognition is a biometric technology used to identify individuals based on facial feature information. Previous studies of face recognition used features including the eye, mouth and nose; however, there have been few studies on the effects of using other facial components, such as the eyebrows and chin, on recognition performance. We measured the recognition accuracy affected by these facial components, and compared the differences between computer-based and human-based facial recognition methods. This research is novel in the following four ways compared to previous works. First, we measured the effect of components such as the eyebrows and chin. And the accuracy of computer-based face recognition was compared to human-based face recognition according to facial components. Second, for computer-based recognition, facial components were automatically detected using the Adaboost algorithm and active appearance model (AAM), and user authentication was achieved with the face recognition algorithm based on principal component analysis (PCA). Third, we experimentally proved that the number of facial features (when including eyebrows, eye, nose, mouth, and chin) had a greater impact on the accuracy of human-based face recognition, but consistent inclusion of some feature such as chin area had more influence on the accuracy of computer-based face recognition because a computer uses the pixel values of facial images in classifying faces. Fourth, we experimentally proved that the eyebrow feature enhanced the accuracy of computer-based face recognition. However, the problem of occlusion by hair should be solved in order to use the eyebrow feature for face recognition.

Robustness of Face Recognition to Variations of Illumination on Mobile Devices Based on SVM

  • Nam, Gi-Pyo;Kang, Byung-Jun;Park, Kang-Ryoung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.1
    • /
    • pp.25-44
    • /
    • 2010
  • With the increasing popularity of mobile devices, it has become necessary to protect private information and content in these devices. Face recognition has been favored over conventional passwords or security keys, because it can be easily implemented using a built-in camera, while providing user convenience. However, because mobile devices can be used both indoors and outdoors, there can be many illumination changes, which can reduce the accuracy of face recognition. Therefore, we propose a new face recognition method on a mobile device robust to illumination variations. This research makes the following four original contributions. First, we compared the performance of face recognition with illumination variations on mobile devices for several illumination normalization procedures suitable for mobile devices with low processing power. These include the Retinex filter, histogram equalization and histogram stretching. Second, we compared the performance for global and local methods of face recognition such as PCA (Principal Component Analysis), LNMF (Local Non-negative Matrix Factorization) and LBP (Local Binary Pattern) using an integer-based kernel suitable for mobile devices having low processing power. Third, the characteristics of each method according to the illumination va iations are analyzed. Fourth, we use two matching scores for several methods of illumination normalization, Retinex and histogram stretching, which show the best and $2^{nd}$ best performances, respectively. These are used as the inputs of an SVM (Support Vector Machine) classifier, which can increase the accuracy of face recognition. Experimental results with two databases (data collected by a mobile device and the AR database) showed that the accuracy of face recognition achieved by the proposed method was superior to that of other methods.

Comparison of prediction accuracy for genomic estimated breeding value using the reference pig population of single-breed and admixed-breed

  • Lee, Soo Hyun;Seo, Dongwon;Lee, Doo Ho;Kang, Ji Min;Kim, Yeong Kuk;Lee, Kyung Tai;Kim, Tae Hun;Choi, Bong Hwan;Lee, Seung Hwan
    • Journal of Animal Science and Technology
    • /
    • v.62 no.4
    • /
    • pp.438-448
    • /
    • 2020
  • This study was performed to increase the accuracy of genomic estimated breeding value (GEBV) predictions for domestic pigs using single-breed and admixed reference populations (single-breed of Berkshire pigs [BS] with cross breed of Korean native pigs and Landrace pigs [CB]). The principal component analysis (PCA), linkage disequilibrium (LD), and genome-wide association study (GWAS) were performed to analyze the population structure prior to genomic prediction. Reference and test population data sets were randomly sampled 10 times each and precision accuracy was analyzed according to the size of the reference population (100, 200, 300, or 400 animals). For the BS population, prediction accuracy was higher for all economically important traits with larger reference population size. Prediction accuracy was ranged from -0.05 to 0.003, for all traits except carcass weight (CWT), when CB was used as the reference population and BS as the test. The accuracy of CB for backfat thickness (BF) and shear force (SF) using admixed population as reference increased with reference population size, while the results for CWT and muscle pH at 24 hours after slaughter (pH) were equivocal with respect to the relationship between accuracy and reference population size, although overall accuracy was similar to that using the BS as the reference.

Screening of Rice Germplasm for the Distribution of Rice Blast Resistance Genes and Identification of Resistant Sources

  • Ali, Asjad;Hyun, Do-Yoon;Choi, Yu-Mi;Lee, Sukyeung;Oh, Sejong;Park, Hong-Jae;Lee, Myung-Chul
    • Korean Journal of Plant Resources
    • /
    • v.29 no.6
    • /
    • pp.658-669
    • /
    • 2016
  • Rice blast, caused by a fungus Magnaporthe oryzae, is one of the most devastating diseases of rice worldwide. Analyzing the valuable genetic resources is important in making progress towards blast resistance. Molecular screening of major rice blast resistance (R) genes was determined in 2,509 accessions of rice germplasm from different geographic regions of Asia and Europe using PCR based markers which showed linkage to twelve major blast R genes, Pik-p, Pi39, Pit, Pik-m, Pi-d(t)2, Pii, Pib, Pik, Pita, Pita/Pita-2, Pi5, and Piz-t. Out of 2,509 accessions, only two accessions had maximum nine blast resistance genes followed by eighteen accessions each with eight R genes. The polygenic combination of three genes was possessed by maximum number of accessions (824), while among others 48 accessions possessed seven genes, 119 accessions had six genes, 267 accessions had five genes, 487 accessions had four genes, 646 accessions had two genes, and 98 accessions had single R gene. The Pik-p gene appeared to be omnipresent and was detected in all germplasm. Furthermore, principal component analysis (PCA) indicated that Pita, Pita/Pita-2, Pi-d(t)2, Pib and Pit were the major genes responsible for resistance in the germplasm. The present investigation revealed that a set of 68 elite germplasm accessions would have a competitive edge over the current resistance donors being utilized in the breeding programs. Overall, these results might be useful to identify and incorporate the resistance genes from germplasm into elite cultivars through marker assisted selection in rice breeding.

Candidate First Moves for Solving Life-and-Death Problems in the Game of Go, using Kohonen Neural Network (코호넨 신경망을 이용 바둑 사활문제를 풀기 위한 후보 첫 수들)

  • Lee, Byung-Doo;Keum, Young-Wook
    • Journal of Korea Game Society
    • /
    • v.9 no.1
    • /
    • pp.105-114
    • /
    • 2009
  • In the game of Go, the life-and-death problem is a fundamental problem to be definitely overcome when implementing a computer Go program. To solve local Go problems such as life-and-death problems, an important consideration is how to tackle the game tree's huge branching factor and its depth. The basic idea of the experiment conducted in this article is that we modelled the human behavior to get the recognized first moves to kill the surrounded group. In the game of Go, similar life-and-death problems(patterns) often have similar solutions. To categorize similar patterns, we implemented Kohonen Neural Network(KNN) based clustering and found that the experimental result is promising and thus can compete with a pattern matching method, that uses supervised learning with a neural network, for solving life-and-death problems.

  • PDF

Sliding Active Camera-based Face Pose Compensation for Enhanced Face Recognition (얼굴 인식률 개선을 위한 선형이동 능동카메라 시스템기반 얼굴포즈 보정 기술)

  • 장승호;김영욱;박창우;박장한;남궁재찬;백준기
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.6
    • /
    • pp.155-164
    • /
    • 2004
  • Recently, we have remarkable developments in intelligent robot systems. The remarkable features of intelligent robot are that it can track user and is able to doface recognition, which is vital for many surveillance-based systems. The advantage of face recognition compared with other biometrics recognition is that coerciveness and contact that usually exist when we acquire characteristics do not exist in face recognition. However, the accuracy of face recognition is lower than other biometric recognition due to the decreasing in dimension from image acquisition step and various changes associated with face pose and background. There are many factors that deteriorate performance of face recognition such as thedistance from camera to the face, changes in lighting, pose change, and change of facial expression. In this paper, we implement a new sliding active camera system to prevent various pose variation that influence face recognition performance andacquired frontal face images using PCA and HMM method to improve the face recognition. This proposed face recognition algorithm can be used for intelligent surveillance system and mobile robot system.

A Study on Face Recognition Using Diretional Face Shape and SOFM (방향성 얼굴형상과 SOFM을 이용한 얼굴 인식에 관한 연구)

  • Kim, Seung-Jae;Lee, Jung-Jae
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.6
    • /
    • pp.109-116
    • /
    • 2019
  • This study proposed a robust detection algorithm. It detects face more stably with respect to changes in light and rotation for the identification of a face shape. Also it satisfies both efficiency of calculation and the function of detection. The algorithm proposed segmented the face area through pre-processing using a face shape as input information in an environment with a single camera and then identified the shape using a Self Organized Feature Map(SOFM). However, as it is not easy to exactly recognize a face area which is sensitive to light, it has a large degree of freedom, and there is a large error bound, to enhance the identification rate, rotation information on the face shape was made into a database and then a principal component analysis was conducted. Also, as there were fewer calculations due to the fewer dimensions, the time for real-time identification could be decreased.

Illumination estimation based on valid pixel selection from CCD camera response (CCD카메라 응답으로부터 유효 화소 선택에 기반한 광원 추정)

  • 권오설;조양호;김윤태;송근호;하영호
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.5
    • /
    • pp.251-258
    • /
    • 2004
  • This paper proposes a method for estimating the illuminant chromaticity using the distributions of the camera responses obtained by a CCD camera in a real-world scene. Illuminant estimation using a highlight method is based on the geometric relation between a body and its surface reflection. In general, the pixels in a highlight region are affected by an illuminant geometric difference, camera quantization errors, and the non-uniformity of the CCD sensor. As such, this leads to inaccurate results if an illuminant is estimated using the pixels of a CCD camera without any preprocessing. Accordingly, to solve this problem the proposed method analyzes the distribution of the CCD camera responses and selects pixels using the Mahalanobis distance in highlight regions. The use of the Mahalanobis distance based on the camera responses enables the adaptive selection of valid pixels among the pixels distributed in the highlight regions. Lines are then determined based on the selected pixels with r-g chromaticity coordinates using a principal component analysis(PCA). Thereafter, the illuminant chromaticity is estimated based on the intersection points of the lines. Experimental results using the proposed method demonstrated a reduced estimation error compared with the conventional method.

Fabrication of Semiconductor Gas Sensor Array and Explosive Gas-Sensing Characteristics (반도체 가스 센서 어레이의 제작 및 폭발성가스 감응 특성)

  • Lee, Dae-Sik;Jung, Ho-Yong;Ban Sang-Woo;Lee, Min-Ho;Huh, Jeung-Soo;Lee, Duk-Dong
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.37 no.11
    • /
    • pp.9-17
    • /
    • 2000
  • A sensor array with 10 discrete sensors integrated on a substrate was developed for discriminating the kinds and quantities of explosive gases. The sensor array consisted of 10 oxide semiconductor gas sensors with $SnO_2$ as base material and had broad sensitivity to specific gas. The sensor array was designed with uniform thermal distribution and had also high sensitivity and reproductivity to low gas concentration through nano-sized sensing materials with different additives. By using the sensitivity signal of the sensor array at $400^{\circ}C$, we could reliably discriminate the kinds and quantities of explosive gases like butane, propane and methane under the lower explosion limit through the principal component analysis (PCA) method.

  • PDF