• Title/Summary/Keyword: PBL scheme

Search Result 15, Processing Time 0.016 seconds

Accuracy Assessment of Planetary Boundary Layer Height for the WRF Model Using Temporal High Resolution Radio-sonde Observations (시간 고해상도 라디오존데 관측 자료를 이용한 WRF 모델 행성경계층고도 정확도 평가)

  • Kang, Misun;Lim, Yun-Kyu;Cho, Changbum;Kim, Kyu Rang;Park, Jun Sang;Kim, Baek-Jo
    • Atmosphere
    • /
    • v.26 no.4
    • /
    • pp.673-686
    • /
    • 2016
  • Understanding limitation of simulation for Planetary Boundary Layer (PBL) height in mesoscale meteorological model is important for accurate meteorological variable and diffusion of air pollution. This study examined the accuracy for simulated PBL heights using two different PBL schemes (MYJ, YSU) in Weather Research and Forecasting (WRF) model during the radiosonde observation period. The simulated PBL height were verified using atmospheric sounding data obtained from radiosonde observations that were conducted during 5 months from August to December 2014 over the Gumi weir in Nakdong river. Four Dimensional Data Assimilation (FDDA) using radiosonde observation data were conducted to reduce error of PBL height in WRF model. The assessment result of PBL height showed that RMSE with YSU scheme were lower than that with MYJ scheme in the day and night time, respectively. Especially, the WRF model with YSU scheme produced lower PBL height than with the MYJ scheme during night time. The YSU scheme showed lower RMSE than the MYJ scheme on sunny, cloudy and rainy day, too. The experiment result of FDDA showed that PBL height error were reduced by FDDA and PBL height at the nudging coefficient of $3.0{\times}10^{-1}$ (YSU_FDDA_2) were similar to observation compared to the nudging coefficient of $3.0{\times}10^{-4}$ (YSU_FDDA_1).

Sensibility Study for PBL Scheme of WRF-CMAQ (PBL Scheme에 대한 WRF-CMAQ 민감도 분석)

  • Moon, Nan-Kyoung;Kim, Soon-Tae;Seo, Ji-Hyun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.27 no.6
    • /
    • pp.791-804
    • /
    • 2011
  • Numerical simulations were carried out to investigate the impact of PBL (Planetary boundary layer) scheme implemented in WRF on the result of meteorological fields and CMAQ modeling. 25-day period, representing high ozone concentration, was selected for the simulations. The three WRF domains covered East Asia region, Korean Peninsula and Seoul metropolitan area. The sensitivity of WRF-CMAQ modeling to the various PBL schemes was assessed and quantified by comparing model output and against observation from the meteorological and the air quality monitoring network within the domain. The meteorological variables evaluated included temperature, wind speed and direction over surface sites and upper air sounding sites. The CMAQ variables included gaseous species $O_3$ and $NO_x$ over monitoring stations. Although difference of PBL schemes implemented in WRF, they did not appreciably affect the WRF and CMAQ performance. There are partially differences between non-local and local mixing scheme, but are not distinct differences for the results of weather and air quality. It is suggested that impact of parameterization of vertical eddy diffusivity scheme in CMAQ also need to be researched in the future study.

A study on the PBL Application Scheme for Optimal Maintenance of the KF-X Project (한국형전투기(KF-X)의 최적정비를 위한 PBL 적용방안에 관한 연구)

  • Park, Keun-Seog;Yoo, Yong-Hyun
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.24 no.3
    • /
    • pp.10-18
    • /
    • 2016
  • This paper deals with the Performance Based Logistics(PBL) application scheme pertaining to optimal maintenance program for logistics of Korean Fighter Experimental(KF-X) Project. For enhancement of the performance based logistics system application to KF-X program the selection of appropriate standards fit to maximize cost-cutting, a set of performance metrics fit for the purpose of the contract, foreign technology dependence of core equipments and parts were considered. Thus, selecting appropriate standards fit for Korean logistics environment, domestic maintenance enterprise for stable rate of operation of KF-X, a systematic reliability task that is able to measure quantitative combat capability are suggested.

Sensitivity Evaluation of Wind Fields in Surface Layer by WRF-PBL and LSM Parameterizations (WRF 모델을 이용한 지표층 바람장의 대기경계층 모수화와 지면모델 민감도 평가)

  • Seo, Beom-Keun;Byon, Jae-Young;Choi, Young-Jean
    • Atmosphere
    • /
    • v.20 no.3
    • /
    • pp.319-332
    • /
    • 2010
  • Sensitivity experiments of WRF model using different planetary boundary layer (PBL) and land surface model (LSM) parameterizations are evaluated for prediction of wind fields within the surface layer. The experiments were performed with three PBL schemes (YSU, Pleim, MYJ) in combination with three land surface models (Noah, RUC, Pleim). The WRF model was conducted on a nested grid from 27-km to 1-km horizontal resolution. The simulations validated wind speed and direction at 10 m and 80 m above ground level at a 1-km spatial resolution over the South Korea. Statistical verification results indicate that Pleim and YSU PBL schemes are in good agreement with observations at 10 m above ground level, while the MYJ scheme produced predictions similar to the observed wind speed at 80 m above ground level. LSM comparisons indicate that the RUC model performs best in predicting 10-m and 80-m wind speed. It is found that MYJ (PBL) - RUC (LSM) simulations yielded the best results for wind field in the surface layer. The choice of PBL and LSM parameterization will contribute to more accurate wind predictions for air quality studies and wind power using WRF.

Effects of Physical Parameterizations on the Simulation of a Snowfall Event over Korea Caused by Air-mass Transformation (기단변질형 한반도 강설 모의에 있어서 물리과정 모수화 과정의 효과)

  • Seol, Kyung-Hee;Hong, Song-You
    • Atmosphere
    • /
    • v.16 no.3
    • /
    • pp.203-213
    • /
    • 2006
  • The objective of this paper is to investigate the effects of physical parameterization on the simulation of a snowfall event over Korea caused by air-mass transformation by using the PSU/NCAR MM5. A heavy snowfall event over Korea during 3-5 January 2003 is selected. In addition to the control experiments employing simple-ice microphysics scheme, MRF PBL scheme, and original surface layer process, three consequent physics sensitivity experiments are performed. Each experiment exchanges microphysics (Reisner Graupel), boundary layer (YSU PBL) schemes, and revised surface layer process with a reduced thermal roughness length for the control run. The control run reproduces an overall pattern of snowfall over Korea, but with a high bias by a factor of about 2. As revealed in the previous studies, the cloud microphysics and PBL parameterizations do not show a significant sensitivity for the case of snowfall. A more sophisticated cloud processes does not reveal a discernible effect on the simulated snowfall. Further, high bias in snowfall is exaggerated when a more realistic PBL scheme is employed. On the other hand, it is found that the revised surface layer process plays a role in improving the prediction of snowfall by reducing it. Thus, it is found that a realistic design of surface layer physics in mesoscale models is an important factor to the reduction of systematic bias of the snowfall over Korea that is caused by air-mass transformation over the Yellow sea.

Verification of the Planetary Boundary Layer Height Calculated from the Numerical Model Using a Vehicle-Mounted Lidar System (차량탑재 라이다 시스템을 활용한 수치모델 행성경계층고도 검증)

  • Park, Chang-Geun;Nam, Hyoung-Gu
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_1
    • /
    • pp.793-806
    • /
    • 2020
  • In this study,for YSU (Yonsei University), MYJ(Mellor-Yamada-Janjic), ACM2 (Asymmetric Convective Model), and BouLac (Bougeault-Lacarrere) PBL schemes, numerical experiments were performed for the case period (June 26-30, 2014). The PBLH calculated by using the backscatter signal produced by the mobile vehicle-mounted lidar system (LIVE) and the PBLH calculated by the prediction of each PBL schemes of WRF were compared and analyzed. In general, the experiments using the non-local schemes showed a higher correlation than the local schemes for lidar observation. The standard deviation of the PBLH difference for daylight hours was small in the order of YSU (≈0.39 km), BouLac (≈0.45 km), ACM2 (≈0.47 km), MYJ (≈0.53 km) PBL schemes. In the RMSE comparison for the case period, the YSU PBL scheme was found to have the highest precision. The meteorological lider mounted on the vehicle is expected to provide guidance for the analysis of the planetary boundary layer in a numerical model under various weather conditions.

Sensitivity of Typhoon Simulation to Physics Parameterizations in the Global Model (전구 모델의 물리과정에 따른 태풍 모의 민감도)

  • Kim, Ki-Byung;Lee, Eun-Hee;Seol, Kyung-Hee
    • Atmosphere
    • /
    • v.27 no.1
    • /
    • pp.17-28
    • /
    • 2017
  • The sensitivity of the typhoon track and intensity simulation to physics schemes of the global model are examined for the typhoon Bolaven and Tembin cases by using the Global/Regional Integrated Model System-Global Model Program (GRIMs-GMP) with the physics package version 2.0 of the Korea Institute of Atmospheric Prediction Systems. Microphysics, Cloudiness, and Planetary boundary Layer (PBL) parameterizations are changed and the impact of each scheme change to typhoon simulation is compared with the control simulation and observation. It is found that change of microphysics scheme from WRF Single-Moment 5-class (WSM5) to 1-class (WSM1) affects to the typhoon simulation significantly, showing the intensified typhoon activity and increased precipitation amount, while the effect of the prognostic cloudiness and PBL enhanced mixing scheme is not noticeable. It appears that WSM1 simulates relatively unstable and drier atmospheric structure than WSM5, which is induced by the latent heat change and the associated radiative effect due to not considering ice cloud. And WSM1 results the enhanced typhoon intensity and heavy rainfall simulation. It suggests that the microphysics is important to improve the capability for typhoon simulation of a global model and to increase the predictability of medium range forecast.

Sensitivity Experiments of Vertical Resolution and Planetary Boundary Layer Parameterization Schemes on the Seoul Metropolitan Area using WRF Model (수도권 지역의 고해상도 WRF 모델 기반 연직 해상도 및 경계층 모수화 방안 민감도 실험)

  • Lim, A-Young;Roh, Joon-Woo;Jee, Joon-Bum;Choi, Young-Jean
    • Journal of the Korean earth science society
    • /
    • v.36 no.6
    • /
    • pp.553-566
    • /
    • 2015
  • The effects of vertical resolutions and planetary boundary layer (PBL) physics schemes in a numerical simulation with a very high resolution over the metropolitan area were investigated. The numerical experiments using the Weather Research and Forecast model were conducted from 0000 UTC 25 October to 0000 UTC 26 October 2013. We verified the numerical results against with six hourly observation data from the radiosonde at Seolleung, which was located in southern part of Seoul, and forty three auto weather systems in Seoul. In the experiments of vertical resolutions in low level atmosphere with 44, 50, and 60 layers, which are set to be subdivided particularly under 2 km height. The experiment in 60 layers, which has the highest vertical resolution in this study, showed relatively a clear diurnal variation of PBL heights. Especially, the difference of PBL heights and 10-meter wind fields were mainly seen in the area of high altitude lands for the experiments of vertical resolution. In the sensitivity experiment of PBL schemes such as asymmetric convective model-version 2 (ACM2), Yonsei University (YSU), and Mellow-Yamada-Janjic (MYJ) to the temperature, all three PBL schemes revealed lower temperature than observed profile from the radiosonde in the entire period. The experiments with YSU PBL and ACM2 PBL schemes show relatively less biased in comparison with the experiment of the MYJ PBL scheme.

Optimizing a Low-resolution Global Ocean Circulation Model Using MOM6 (MOM6 저해상도 전지구 해양순환모델의 최적화 연구)

  • HO CHAN PARK;INSEONG CHANG;HYUNKEUN JIN;GYUNDO PAK;YOUNG-GYU PARK;YOUNG HO KIM
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.29 no.3
    • /
    • pp.139-152
    • /
    • 2024
  • This study conducted various sensitivity experiments to assess and improve the performance of low-resolution global ocean circulation models. The MOM6 (Modular Ocean Model Version 6), developed by the Geophysical Fluid Dynamics Laboratory, was utilized. We focused on analyzing the effects of implementing the ePBL (energetics based planetary boundary layer) mixed layer scheme, including tidal simulation, and applying hybrid vertical coordinate system on the simulation accuracy of ocean circulation. The results revealed that the ePBL scheme effectively mitigated excessive mixed layer thickness and high temperature biases in the equatorial Pacific, while tidal simulations contributed to improving the oceanic structures in the Yellow Sea and the East Sea. Additionally, the hybrid vertical coordinate system enabled more accurate simulations of the vertical structure of temperature and salinity, enhancing model performance. This study proposes specific approaches to enhance the accuracy of ocean circulation models, contributing to global ocean and climate modeling efforts.