DOI QR코드

DOI QR Code

Optimizing a Low-resolution Global Ocean Circulation Model Using MOM6

MOM6 저해상도 전지구 해양순환모델의 최적화 연구

  • HO CHAN PARK (Division of Earth Environmental System Science, Pukyong National University) ;
  • INSEONG CHANG (Division of Earth Environmental System Science, Pukyong National University) ;
  • HYUNKEUN JIN (Ocean Circulation & Climate Research Department, Korea Institute of Ocean Science & Technology) ;
  • GYUNDO PAK (Ocean Circulation & Climate Research Department, Korea Institute of Ocean Science & Technology) ;
  • YOUNG-GYU PARK (Ocean Circulation & Climate Research Department, Korea Institute of Ocean Science & Technology) ;
  • YOUNG HO KIM (Division of Earth Environmental System Science, Pukyong National University)
  • 박호찬 (국립부경대학교 지구환경시스템과학부 해양학전공) ;
  • 장인성 (국립부경대학교 지구환경시스템과학부 해양학전공) ;
  • 진현근 (한국해양과학기술원 해양순환기후연구부 무기계약직기술원) ;
  • 박균도 (한국해양과학기술원 해양순환기후연구부) ;
  • 박영규 (한국해양과학기술원 해양순환기후연구부) ;
  • 김영호 (국립부경대학교 지구환경시스템과학부 해양학전공)
  • Received : 2024.04.25
  • Accepted : 2024.06.26
  • Published : 2024.08.31

Abstract

This study conducted various sensitivity experiments to assess and improve the performance of low-resolution global ocean circulation models. The MOM6 (Modular Ocean Model Version 6), developed by the Geophysical Fluid Dynamics Laboratory, was utilized. We focused on analyzing the effects of implementing the ePBL (energetics based planetary boundary layer) mixed layer scheme, including tidal simulation, and applying hybrid vertical coordinate system on the simulation accuracy of ocean circulation. The results revealed that the ePBL scheme effectively mitigated excessive mixed layer thickness and high temperature biases in the equatorial Pacific, while tidal simulations contributed to improving the oceanic structures in the Yellow Sea and the East Sea. Additionally, the hybrid vertical coordinate system enabled more accurate simulations of the vertical structure of temperature and salinity, enhancing model performance. This study proposes specific approaches to enhance the accuracy of ocean circulation models, contributing to global ocean and climate modeling efforts.

이 연구에서는 GFDL (Geophysical Fluid Dynamics Laboratory)에서 개발한 해양순환모델인 MOM6 (Modular Ocean Model Version 6)를 사용하여 저해상도 전지구 해양순환모델의 성능을 평가하고 개선 방안을 모색하기 위해 다양한 민감도 실험을 수행하였다. 특히, ePBL (energetics based planetary boundary layer) 혼합층 방안의 적용, 조석 처방, 그리고 하이브리드 수직격자체계의 도입이 모델의 표층 수온과 염분 모의 성능에 미치는 영향을 분석하였다. 연구 결과, ePBL 혼합층 방안은 적도 태평양에서의 혼합층 두께의 과대 모의와 고온 편향을 완화하는 데 효과적이었으며, 조석 처방은 황해와 동해에서 해양 구조를 개선하는데 일부 기여하였다. 또한, 하이브리드 수직격자체계는 수온 및 염분의 수직 구조를 보다 정확하게 모의할 수 있게 하여 모델의 성능을 개선하였다. 이 연구는 해양순환모델의 정확성을 높이기 위한 구체적인 방안을 제시하고 있으며, 전지구적인 해양 및 기후 모델링의 성능 개선에 기여할 수 있을 것으로 기대한다.

Keywords

Acknowledgement

이 논문은 해양수산과학기술진흥원의 지원으로 수행된 "해양기후변화 통합관측·장기전망 기반 구축(20220033)"와 "아북극-서태평양 기인 한반도 주변 고수온 현상 규명 및 예측시스템 구축(20190344)" 연구과제의 결과임.

References

  1. Adcroft, A., W. Anderson, V. Balaji, C. Blanton, M. Bushuk, C. Dufour, J. Dunne, S. Griffies, R. Hallberg, M. Harrison, I. Held, M. Jansen, J. John, J. Krasting, A. Langenhorst, S. Legg, Z. Liang, C. McHugh, A. Radhakrishnan and R. Zhang, 2019. The GFDL Global Ocean and Sea Ice Model OM4.0: Model Description and Simulation Features. J. Adv. Model. Earth Syst., 11: 3167-3211. 
  2. Bryan, K., F.G. Komro, S. Manabe and M.J. Spelman, 1982. Transient climate response to increasing atmospheric carbon dioxide. Science, 215(4528): 56-58. 
  3. Boyer Montegut, C., G. Madec, A.S. Fischer, A. Lazar and D. Iudicone, 2004. Mixed layer depth over the global ocean: An examination of profile data and a profile-based climatology. J. Geoph. Res., 109(C12). 
  4. Chassignet, E.P., L.T. Smith, G.R. Halliwell and R. Bleck, 2003. North Atlantic simulations with the Hybrid Coordinate Ocean Model (HYCOM): Impact of the vertical coordinate choice, reference pressure, and thermobaricity. J. Phys. Oceanogr., 33(12): 2504-2526. 
  5. Dai, A. 2017. Dai and Trenberth Global River Flow and Continental Discharge Dataset. Research Data Archive at the National Center for Atmospheric Research. Computational and Information Systems Laboratory, DOI: 10.5065/D6V69H1T. 
  6. Dai, A. and K.E. Trenberth, 2002. Estimates of freshwater discharge from continents: Latitudinal and seasonal variations. J. Hydrometeorol., 3: 660-687. 
  7. Dai, A., T. Qian, K.E. Trenberth and J.D. Milliman, 2009. Changes in continental freshwater discharge from 1948-2004. J. Clim., 22: 2773-2791. 
  8. Egbert, G.D. and R.D. Ray, 2000. Significant dissipation of tidal energy in the deep ocean inferred from satellite altimeter data. Nature, 405(6788): 775-778. DOI: 10.1038/35015531. 
  9. Griffies, S., C. Boning, F. Bryan, E. Chassignet, R. Gerdes, H. Hasumi, A. Hirst, A. Treguier and D. Webb, 2000. Developments in ocean climate modelling. Ocean Model., 2(3-4): 123-192. 
  10. Griffies, S.M., 2012. Elements of the Modular Ocean Model (MOM), Geophysical Fluid Dynamics Laboratory.
  11. Griffies, S.M., M. Winton and B.L. Samuels, 2004. The Large and Yeager (2004) dataset and CORE. NOAA Geophysical Fluid Dynamis Laboratory, 5 p. 
  12. Guo, X.Y., X.-H. Zhu, Y. Long and D.J. Hung, 2013. Spatial variations in the Kuroshio nutrient transport from the East China Sea to south of Japan. Biogeosciences, 10: 64-3-6417. 
  13. Huang, R.X., 1999. Mixing and energetics of the oceanic thermohaline circulation. J. Phys. Oceanogr., 29: 727-746. 
  14. Jackson, L., R. Hallberg and S. Legg, 2008. A parameterization of shear-driven turbulence for ocean climate models. J. Phys. Oceanogr., 38: 1033-1053. 
  15. Jayne, S.R. and L.C. St. Laurent, 2001. Parameterizing tidal dissipation over rough topography. Geophys. Res. Lett., 28(5): 811-814. DOI: 10.1029/2000GL012044. 
  16. Jiang, W., D. Yang, L. Xu, Z. He, X. Cui and B. Yin, 2023. Numerical study of tidal effect on the water flux across the Korea/Tsushima Strait. Front. Mar. Sci., 10: 1287611. 
  17. Large, W.G., J.C. McWilliams and S.C. Doney, 1994. Oceanic vertical mixing: a review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32(4): 363-403. 
  18. Lee, S.-H. and R.C. Beardsley, 1999. Influence of stratification on residual tidal currents in the Yellow Sea. J. Geophys. Res., 104(C7): 15679-15701. 
  19. Legg, S., R.W. Hallberg and J.B. Girton, 2006. Comparison of entrainment in overflows simulated by z-coordinate, isopycnal and nonhydrostatic models. Ocean Model., 11(1-2): 69-97. 
  20. Lyu, S.J. and K. Kim, 2003. Absolute transport from the sea level difference across the Korea Strait. Geophys. Res. Lett., 30(6): 1285. 
  21. Manabe, S. and R.J. Stouffer, 2007. Role of ocean in global warming. J. Meteor. Soc. Japan, 85B: 385-403. 
  22. Megann, A.P., 2018. Estimating the numerical diapycnal mixing in an eddy-permitting ocean model. Ocean Model., 121: 19-33. 
  23. Megann, A.P., A.L. New, A.T. Blaker and B. Sinha, 2010. The sensitivity of a coupled climate model to its ocean component. J. Clim., 23(19): 5126-5150. 
  24. Minato, S. and R. Kimura, 1980. Volume transport of the western boundary current penetrating into a marginal sea. J. Oceanogr. Soc. Jpn., 36: 185-195. 
  25. Munk, W. and C. Wunsch, 1998. Abyssal recipes II: Energetics of tidal and wind mixing. Deep Sea Res., Part I: Oceanographic Research Papers, 45(12): 1977-2010. DOI: 10.1016/S0967-0637(98)00070-3. 
  26. Na, H., Y. Isoda, K. Kim, Y.H. Kim, and S.J. Lyu, 2009. Recent observations in the straits of the East/Japan Sea: A review of hydrography, currents and volume transports. J. Mar. Syst., 78(2): 200-205. 
  27. Ohshima, K.I., 1994. The flow system in the Japan Sea caused by sea level difference through shallow straits. J. Geophys. Res., 99: 9925-9940. 
  28. Pedlosky, J., 1987. Geophysical Fluid Dynamics, 2nd Edition. Springer-Verlag, New York, 710 pp. 
  29. Reichl, B.G. and R. Hallberg, 2018. A simplified energetics based planetary boundary layer (ePBL) approach for ocean climate simulations. Ocean Model., 132: 112-129. 
  30. Shin, H.-R., J.-H. Lee, C.-H. Kim, J.-H. Yoon, N. Hirose, T. Tetsutaro and K. Cho, 2022. Long-term variation in volume transport of the Tsushima warm current estimated from ADCP current measurement and sea level differences in the Korea/Tsushima Strait. J. Mar. Syst., 232: 103750. 
  31. Wang, C., C. Deser, J.-H. Yu, P. Dinezio and A. Clement, 2017. El Nino and Southern Oscillation (ENSO): A review. In: Coral Reefs of the Eastern Tropical Pacific, edited by Glynn, P. W, D. .P. Manzello, I. C. Enochs, Springer, pp. 85-106. 
  32. Wang, X., Z. Liu and S, Peng, 2017. Impact of tidal mixing on water mass transformation and circulation in the south china sea. J. Phys. Oceanogr., 47: 419-432. 
  33. Winton, M., R. Hallberg and A. Gnanadesikan, 1998. Simulation of density-driven frictional downslope flow in Z-coordinate ocean models. J. Phys. Oceanogr., 28(11): 2163-2174. 
  34. Wunsch, C. and R. Ferrari, 2004. Vertical mixing, energy, and the general circulation of the oceans. Annu. Rev. Fluid Mech., 36(1): 281-314. DOI: 10.1146/annurev.fluid.36.050802.122121.