• Title/Summary/Keyword: PA-1 cells

Search Result 223, Processing Time 0.03 seconds

Effects of Several Medicinal Plants Extract on Survival Rate, Chlorophyll Contents and Photosynthetic Electron Transport Activity of Liverwort Photoautotrophic Cultured Cell (약용식물 추출액이 우산이끼 자가관양배양세포의 생존율, 엽록소함량 및 광합성전자전달 활성에 미치는 영향)

  • 정형진;권순태;김시무
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.40 no.2
    • /
    • pp.133-141
    • /
    • 1995
  • The effects of allelochemicals from medicinal plants have been studied as photo-synthetic inhibitor for photoautotrophic(PA) cultured cells. The extracts from 9 plant species were used for measuring the physiological effects on the liverwort cultured cell in following areas; germination inhibition, chlorophyll contents, hill activity, cell viability, photosynthetic oxygen evolution,and protein pattern changes on SDS PAGE. Germination inhibitions were detected in all plant after treating with 10% extract. Especially, treatment with 10% extract from Pulsatilla koreana and Aconitum carmichael inhibited germinations completely. Chlorophyll fornation was inhibited completely by treating PA cells with extract of Pulsatilla koreana, whose effect was similar to that of DCMU 10-3M, inhibitor for photosynthetic electron trans-fer. The treatment with extract from Pulsatilla koreana on PA cell showed the highest hill activity and the lowest cell viability among extracts studied. Oxygen releasing has been decreased down to 14-77% after treating with extracts from Pinellia ternata, Araliacont inentaila, Pulsatilla koreana and Vitex rotundifolia. Especially, 60$\mu$l of Pulsatilla koreana extract into 2ml mixture of PA cell inhibit-ed oxygen release up to 50%. Protein bands on SDS-PAGE, 14kD, 31kD, 41kD, 53kD, and 73kD, were not detected after treating Pulsatilla koreana extract on PA cells.

  • PDF

Effects of Rhei Rhizoma and Moutan Cortex on Inflammation and Insulin Resistance in Endothelial Cells Stimulated with Palmitic Acid (팔미트 지방산으로 자극된 혈관내피세포에서 대황 및 목단피가 염증 및 인슐린 저항성에 미치는 효과)

  • Lee, Joon Suh;Lee, Jae-Cheol;Yun, Yong-Gab
    • Korean Journal of Pharmacognosy
    • /
    • v.45 no.1
    • /
    • pp.28-34
    • /
    • 2014
  • Rhei Rhizoma (RR) and Moutan cortex (MC) have been reported to have anti-inflammatory effects. However, little is known about the effects of RR and MC on endothelial inflammation and insulin resistance (IR). This study aims to investigate whether the water extracts of RR and MC could exert protection against palmitic acid (PA)-induced inflammation and IR in human umbilical vein endothelial cells (HUVECs). HUVECs were pretreated for 6 h with RR or MC, and then exposed to PA for 24 h. The levels of interleukin-6 (IL-6) and tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$) were determined by enzyme-linked immunosorbant assay kits. Western blot analysis was performed for activation of nuclear factor-${\kappa}B$ (NF-${\kappa}B$) and insulin receptor substrate-1 (IRS-1). In HUVECs stimulated with PA, both RR and MC significantly inhibited the production of TNF-${\alpha}$ and IL-6 and the activation of NF-${\kappa}B$. At the same concentrations, the inhibitory effects of RR were more potent than those of MC. PA reduced insulin-induced phosphorylation of IRS-1, which was reversed by RR and MC. The results suggest that RR and MC are effective in inhibiting PA-associated endothelial inflammation and ameliorating IR by beneficial regulation of NF-${\kappa}B$ and IRS-1 activation.

Analysis of the Change of Polyamine during the ABA Treatment in Radish Young Cotyledons and Hypocotyls (무의 자엽과 하배축에서 ABA 처리동안 Polyamine 농도 변화의 분석)

  • Cho, Bong-Heuy;Park, Sun Young
    • Analytical Science and Technology
    • /
    • v.14 no.5
    • /
    • pp.458-463
    • /
    • 2001
  • The concentration of free PAs in the cells was decreased gradually from $500{\mu}mole$ to $290{\mu}mole$ for PUT, from $153{\mu}mole$ to $79{\mu}mole$ for SPD, from $69{\mu}mole$ to $20{\mu}mole$ for SPM during the ABA treatment within 1 hour, and was slightly changed with the increasing or decreasing between $290{\mu}mole{\sim}220{\mu}mole$ in the constant content level of PUT during the continuously ABA treatment of 2 days in the young cotyledons. The concentration of free PUT was gradually decreased from $160{\mu}mole$ to $9{\mu}mole$ during the ABA treatment within 1 hour like as cotyledons, and decreased from $9{\mu}mole$ to $5{\mu}mole$ during the continuously ABA treatment 2 days in the young hypocotyls. PUT and other PA were existed $5{\mu}mole$ during the continuously ABA treatment of 2 days in the hypocotyls. It showed that during the ABA treatment was decreased all PA concentration in the cells and PAs were not concerned directly to stress, but might regulated physiological change against stress.

  • PDF

A novel variant of t-PA resistant to plasminogen activator inhibitor-1; expression in CHO cells based on In Silico experiments

  • Davami, Fatemeh;Sardari, Soroush;Majidzadeh-A, Keivan;Hemayatkar, Mahdi;Barkhordari, Farzaneh;Enayati, Somayeh;Adeli, Ahmad;Mahboudi, Fereidoun
    • BMB Reports
    • /
    • v.44 no.1
    • /
    • pp.34-39
    • /
    • 2011
  • Resistance to PAI-1 is a factor which confers clinical benefits in thrombolytic therapy. The only US FDA approved PAI-1 resistant drug is Tenecteplase$^{(R)}$. Deletion variants of t-PA have the advantage of fewer disulfide bonds in addition to higher plasma half lives. A new variant was developed by deletion of the first three domains in t-PA in addition to substitution of KHRR 128-131 amino acids with AAAA in truncated t-PA. The specific activity of this new variant, $570\;IU/{\mu}g$, was found to be similar to those found in full length t-PA (Alteplase$^{(R)}$), $580\;IU/{\mu}g$. A 65% and 85% residual activity after inhibition by rPAI-1 was observed for full length and truncated-mutant form, respectively. This new variant as the first PAI-1 resistant truncated t-PA may offer more advantages in clinical conditions in which high PAI-1 levels makes the thrombolytic system prone to re-occlusion.

Genetic Polymorphisms of t-PA and PAI-1 Genes in the Korean Population

  • Kang, Byung-Yong;Lee, Kang-Oh
    • Animal cells and systems
    • /
    • v.7 no.3
    • /
    • pp.249-253
    • /
    • 2003
  • Abnormalities in fibrinolysis system is associated with risk of hypertension. In this report, the Alu repeat insertion/deletion (I/D) polymorphism of tissue plasminogen activator (t-PA) and the Hind III RFLP of plasminogen activator inhibitor-1 (PAI-1) genes were investigated in 115 normotensives and 83 patients with hypertension, and their association with anthropometrical data and plasma biochemical parameters were analyzed. There were no significant differences in the gene frequencies of the two candidate genes between normotensives and hypertensives, respectively. Our results indicate lack of associations between the two polymorph isms in t-PA and PAI-1 genes and risk of hypertension in the population under study. However, the Hind III RFLP of PAI-1 gene was significantly associated with plasma glucose level, suggesting its role in glucose metabolism. It needs to be tested whether this RFLP of PAI-1 gene is associated with insulin resistance syndrome or non-insulin dependent diabetes mellitus (NIDDM) in the Korean population.

Benzyldihydroxyoctenone, a Novel Nonsteroidal Antiandrogen, Shows Differential Apoptotic Induction in Prostate Cancer Cells in Response to Their Androgen Responsiveness

  • Suh, Hye-Won;Oh, Ha-Lim;Lee, Chul-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.5
    • /
    • pp.540-544
    • /
    • 2011
  • The molecular mechanisms of apoptotic induction by benzyldihydroxyoctenone (BDH), a nonsteroidal antiandrogen, isolated from the culture broth of Streptomyces sp., have been previously published in prostate cancer LNCaP cells. Apoptotic induction of BDH-treated LNCaP cells was associated with downregulation of Bcl-xL that caused, in turn, cytochrome c release from mitochondria, and activation of procaspases and specific proteolytic cleavage of poly(ADP-ribose) polymerase (PARP). The purpose of the present study was to investigate the patterns of apoptotic induction by BDH in non-prostate, ovarian cancer PA-1 (androgen-independent and -insensitive) cells and prostate cancer cells with different androgen responsiveness, such as C4-2 (androgen-independent and -sensitive), 22Rv1 (androgen-dependent and -low sensitive), and LNCaP (androgen-dependent and -high sensitive) cells. We found that BDH-treated LNCaP cell proliferation was significantly inhibited in a time-dependent manner and induced apoptosis via downregulation of the androgen receptor (AR) and prostate-specific antigen (PSA), as well as antiapoptotic Bcl-xL protein. However, the levels of BDH-mediated apoptotic induction and growth inhibition in 22Rv1 cells were apparently lower than those of LNCaP cells. In contrast, the induction of apoptosis and antiproliferative effect in BDH-treated non-prostate cancer PA-1 and hormone refractory C4-2 cells were not detectable and marginal, respectively. Therefore, BDH-mediated differential apoptotic induction and growth inhibition in a cell type seem to be obviously dependent on its androgen responsiveness; primarily on androgen-dependency, and then on androgensensitivity.

In vitro Angiogenic Activity of Aloe vera Gel on Calf Pulmonary Artery Endothelial (CPAE) Cells

  • Lee, Myoung-Jin;Lee, Ok-Hee;Yoon, Soo-Hong;Lee, Seung-Ki;Chung, Myung-Hee;Park, Young-In;Sung, Chung-Ki;Choi, Jae-Sue;Kim, Kyu-Won
    • Archives of Pharmacal Research
    • /
    • v.21 no.3
    • /
    • pp.260-265
    • /
    • 1998
  • Angiogenic activity of Aloe vera gel was investigated by in vitro assay. We obtained the most active fraction from dichloromethane extract of Aloe vera gel by partitioning between hexane and 90% aqueous methanol. The most active fraction (F3) increased the proliferation of calf pulmonary artery endothelial (CPAE) cells. In addition, F3 fraction induced CPAE cells to invade type I collagen gel and form capillary-like tube through in vitro angiogenesis assay, and increased the invasion of CPAE cells into matrigel through in vitro invasion assay. Furthermore, the effect on the MRNA expression of proteolytic enzymes which are key participants in the regulation of extracellular matrix degradation was investigated by northern blot analysis. F3 fraction enhanced mRNA expression of urokinase-type plasminogen activator (u-PA), matrix metalloproteinase-2 (MMP-2), and membrane-type MMP (MT-MMP) in CPAE cells whereas the expression of plasminogen activator inhibitory (PAl-1) mRNA was not changed.

  • PDF

Berberine suppresses in vitro migration of human aortic smooth muscle cells through the inhibitions of MMP-2/9, u-PA, AP-1, and NF-κB

  • Liu, Su-Jian;Yin, Cai-Xia;Ding, Ming-Chao;Xia, Shao-You;Shen, Qin-Min;Wu, Ji-Dong
    • BMB Reports
    • /
    • v.47 no.7
    • /
    • pp.388-392
    • /
    • 2014
  • Berberine, a type of isoquinoline alkaloid isolated from Chinese medicinal herbs, has been reported to have various pharmacological activities. Studies have demonstrated that berberine has beneficial effects on vascular remodeling and alleviates restenosis after vascular injury. However, its mechanism of action on vascular smooth muscle cell migration is not fully understood. We therefore investigated the effect of berberine on human aortic smooth muscle cell (HASMC) migration. Boyden chamber assay was performed to show that berberine inhibited HASMC migration dose-dependently. Real-time PCR and Western blotting analyses showed that levels of matrix metalloproteinase (MMP)-2, MMP-9, and urokinase-type plasminogen activator (u-PA) were reduced by berberine at both the mRNA and protein levels. Western blotting assay further confirmed that activities of c-Fos, c-Jun, and NF-${\kappa}B$ were significantly attenuated. These results suggest that berberine effectively inhibited HASMC migration, possibly by down-regulating MMP-2, MMP-9, and u-PA; and interrupting AP-1 and NF-${\kappa}B$ mediated signaling pathways.

Protective Effect of Protocatechuic Acid, Phenolic Compound of Momordica Charantia, against Oxidative Stress and Neuroinflammation in C6 Glial Cell (여주의 페놀성 화합물인 Protocatechuic Acid의 산화적 스트레스 개선 및 신경염증 보호 효과)

  • Kim, Ji-Hyun;Choi, Jung Ran;Cho, Eun Ju;Kim, Hyun Young
    • Journal of Korean Medicine for Obesity Research
    • /
    • v.20 no.1
    • /
    • pp.10-19
    • /
    • 2020
  • Objectives: Oxidative stress-mediated neuroinflammation has been supposed as a crucial factor that contributes to the pathogenesis of many neurodegenerative diseases. In this study, we aimed to investigate the protective activity against oxidative stress and neuroinflammation of protocatechuic acid (PA), active phenolic compound from Momordica Charantia. Methods: Protective activity of PA from oxidative stress was performed under in vitro conditions. Our study investigated the protective mechanism of PA from neuroinflammation in cellular system using C6 glial cell. To investigate the improvement the effects on oxidative stress and neuroinflammation, we induced oxidative stress by H2O2 (100 μM) stimulation and induced neuroinflammation by treatment with lipopolysaccharide (LPS) (1 ㎍/mL) and interferon-gamma (IFN-γ) (10 ng/mL) in C6 glial cells. Results: PA showed strong radical scavenging effect against 1,1-dipenyl-2-picrylhydrazyl, hydroxy radical (·OH) and nitric oxide (NO). Under oxidative stress treated by H2O2, the result showed the increased mRNA expressions of oxidative stress markers such as nuclear factor-kappaB (NF-κB), cyclooxygenase (COX-2) and inducible nitric oxide (iNOS). However, the treatment of PA led to reduced mRNA expressions of NF-κB, COX-2 and iNOS. Moreover, PA attenuated the production of interleukin-6 and scavenged NO generated by both endotoxin LPS and IFN-γ together. Furthermore, it also reduced LPS and IFN-γ-induced mRNA expressions of iNOS and COX-2. Conclusions: In conclusion, our results collectively suggest that PA, phenolic compound of Momordica Charantia, could be a safe anti-oxidant and a promising anti-neuroinflammatory molecule for neurodegenerative diseases.

MicroRNA-126 Regulates the Expression of Stem Cell Transcription Factors (Sox2 and Lin28) in Various Ovarian Tumors (MicroRNA-126은 난소 종양세포의 줄기세포 전사인자 (Sox2와 Lin28) 발현을 조절한다)

  • Park, Ho;Jekal, Seung Joo
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.47 no.4
    • /
    • pp.298-305
    • /
    • 2015
  • Stem cell-like tumor cells are reported to be the main reason for tumor recurrence and metastasis. As one of the new approaches to overcome cancer, studies are emerging to inhibit the expressions of stem cell transcriptional factors (Oct4, Sox2, Klf-4, and Lin28) in cancer cells. MicroRNAs are master genetic regulators that can control development and differentiation of stem cells. In this study using various ovarian tumors (Skov3, Ovcar3, Tov112D, Tov21G, PA-1 and Hsc832(c)T), we examined the expressions of stem cell-related transcription factors, and the biological changes in cell survival and growth by miR-126 that targets stem cell transcriptional factors. We observed that treatment of miR-126 induced the morphological changes and cell suspension in most cells. In addition, miR-126 induced gradual regression of cell division except Skov3 cells, especially significant time-dependent reduction in Tov112D, Tov21G and PA-1. When we examined the expression of stem cell transcriptional factors, Sox2 was shown to be down-regulated after miR-126. Our results demonstrate that miR-126 treatment can provide the reversible environment to regulate cell division and to induce cell death of ovarian tumors, suggesting the molecular biological clues for clinical usage.