DOI QR코드

DOI QR Code

Benzyldihydroxyoctenone, a Novel Nonsteroidal Antiandrogen, Shows Differential Apoptotic Induction in Prostate Cancer Cells in Response to Their Androgen Responsiveness

  • Suh, Hye-Won (Department of Pharmacy, College of Pharmacy, Hanyang University) ;
  • Oh, Ha-Lim (Institute of Medical Science, College of Medicine, Hanyang University) ;
  • Lee, Chul-Hoon (Department of Pharmacy, College of Pharmacy, Hanyang University)
  • Received : 2011.02.22
  • Accepted : 2011.03.10
  • Published : 2011.05.28

Abstract

The molecular mechanisms of apoptotic induction by benzyldihydroxyoctenone (BDH), a nonsteroidal antiandrogen, isolated from the culture broth of Streptomyces sp., have been previously published in prostate cancer LNCaP cells. Apoptotic induction of BDH-treated LNCaP cells was associated with downregulation of Bcl-xL that caused, in turn, cytochrome c release from mitochondria, and activation of procaspases and specific proteolytic cleavage of poly(ADP-ribose) polymerase (PARP). The purpose of the present study was to investigate the patterns of apoptotic induction by BDH in non-prostate, ovarian cancer PA-1 (androgen-independent and -insensitive) cells and prostate cancer cells with different androgen responsiveness, such as C4-2 (androgen-independent and -sensitive), 22Rv1 (androgen-dependent and -low sensitive), and LNCaP (androgen-dependent and -high sensitive) cells. We found that BDH-treated LNCaP cell proliferation was significantly inhibited in a time-dependent manner and induced apoptosis via downregulation of the androgen receptor (AR) and prostate-specific antigen (PSA), as well as antiapoptotic Bcl-xL protein. However, the levels of BDH-mediated apoptotic induction and growth inhibition in 22Rv1 cells were apparently lower than those of LNCaP cells. In contrast, the induction of apoptosis and antiproliferative effect in BDH-treated non-prostate cancer PA-1 and hormone refractory C4-2 cells were not detectable and marginal, respectively. Therefore, BDH-mediated differential apoptotic induction and growth inhibition in a cell type seem to be obviously dependent on its androgen responsiveness; primarily on androgen-dependency, and then on androgensensitivity.

Keywords

References

  1. Baliga, B. C. and S. Kumar. 2002. Role of Bcl-2 family of proteins in malignancy. Hematol. Oncol. 20: 63-74. https://doi.org/10.1002/hon.685
  2. Bhuiyan, M. M., Y. Li, S. Banerjee, F. Ahmed, Z. Wang, S. Ali, and F. H. Sarkar. 2006. Down-regulation of androgen receptor by 3,3'-diindolylmethane contributes to inhibition of cell proliferation and induction of apoptosis in both hormone-sensitive LNCaP and insensitive C4-2B prostate cancer cells. Cancer Res. 66: 10064-10072. https://doi.org/10.1158/0008-5472.CAN-06-2011
  3. Bracarda, S., O. de Cobelli, C. Greco, T. Prayer-Galetti, R. Valdagni, G. Gatta, F. de Braud, and G. Bartsch. 2005. Cancer of the prostate. Crit. Rev. Oncol. Hematol. 56: 379-396. https://doi.org/10.1016/j.critrevonc.2005.03.010
  4. Cosulich, S. C., P. J. Savory, and P. R. Clarke. 1999. Bcl-2 regulates amplification of caspase activation by cytochrome c. Curr. Biol. 9: 147-150. https://doi.org/10.1016/S0960-9822(99)80068-2
  5. Danial, N. N. and S. J. Korsmeyer. 2004. Cell death: Critical control points. Cell 116: 205-219. https://doi.org/10.1016/S0092-8674(04)00046-7
  6. Kang, J., D.-K. Lee, and C.-H. Lee. 2010. Cell cycle arrest and cytochrome c-mediated apoptotic induction in human lung cancer A549 cells by MCS-C2, an analogue of sangivamycin. J. Microbiol. Biotechnol. 20: 433-437.
  7. Kim, M. K., J. Min, B. Y. Choi, H. Lim, Y. H. Cho, and C.-H. Lee. 2007. Discovery of cyclin-dependent kinase inhibitor, CR229, using structure-based drug screening. J. Microbiol. Biotechnol. 17: 1712-1716.
  8. Lee, C.-H., H. Lim, S. Moon, C. Shin, S. Kim, B. J. Kim, and Y. Lim. 2007. Novel anticancer agent, benzyldihydroxyoctenone, isolated from Streptomyces sp. causes G1 cell cycle arrest and induces apoptosis of HeLa cells. Cancer Sci. 98: 795-802. https://doi.org/10.1111/j.1349-7006.2007.00473.x
  9. Lieberman, R. 2004. Evidence-based medical perspectives: The evolving role of PSA for early detection, monitoring of treatment response, and as a surrogate end point of efficacy for interventions in men with different clinical risk states for the prevention and progression of prostate cancer. Am. J. Ther. 11: 501-506. https://doi.org/10.1097/01.mjt.0000141604.20320.0c
  10. Lim, H., Y. Lim, Y. H. Cho, and C.-H. Lee. 2006. Induction of apoptosis in the HepG2 cells by HY53, a novel natural compound isolated from Bauhinia forficate. J. Microbiol. Biotechnol. 16: 1262-1268.
  11. Lim, H., H. L. Oh, and C.-H. Lee. 2006. Effects of Aralia continentalis root extract on cell proliferation and apoptosis in human promyelocytic leukemia HL-60 cells. J. Microbiol. Biotechnol. 16: 1399-1404.
  12. Moon, H. S., H. Lim, S. Moon, H. L. Oh, Y. T. Kim, M. K. Kim, and C.-H. Lee. 2009. Benzyldihydroxyoctenone, a novel anticancer agent, induces apoptosis via mitochondrial-mediated pathway in androgen-sensitive LNCaP prostate cancer cells. Bioorg. Med. Chem. Lett. 19: 742-744. https://doi.org/10.1016/j.bmcl.2008.12.029
  13. Nunez, G., M. A. Benedict, Y. Hu, and N. Inohara. 1998. Caspases: The proteases of the apoptotic pathway. Oncogene 17: 3237-3245.
  14. Oh, H. L., D. K. Lee, H. Lim, and C.-H. Lee. 2010. HY253, a novel decahydrofluorene analog, from Aralia continentalis, induces cell cycle arrest at the G1 phase and cytochrome cmediated apoptosis in human lung cancer A549 cells. J. Ethnopharmacol. 129: 135-139. https://doi.org/10.1016/j.jep.2010.02.010
  15. Oh, H. L., H. Lim, Y. H. Cho, H. C. Koh, H. Kim, Y. Lim, and C.-H. Lee. 2009. HY251, a novel cell cycle inhibitor isolated from Aralia continentalis, induces G1 phase arrest via p53- dependent pathway in HeLa cells. Bioorg. Med. Chem. Lett. 19: 959-961. https://doi.org/10.1016/j.bmcl.2008.11.087
  16. Oh, H. L., H. Lim, Y. Park, Y. Lim, H. C. Koh, Y. H. Cho, and C.-H. Lee. 2009. HY253, a novel compound isolated from Aralia continentalis, induces apoptosis via cytochrome c-mediated intrinsic pathway in HeLa cells. Bioorg. Med. Chem. Lett. 19: 797-799. https://doi.org/10.1016/j.bmcl.2008.12.009
  17. Sheikh, M. S. and A. J. Jr. Fornace. 2000. Role of p53 family members in apoptosis. J. Cell Physiol. 182: 171-181. https://doi.org/10.1002/(SICI)1097-4652(200002)182:2<171::AID-JCP5>3.0.CO;2-3
  18. Sramkoski, R. M., T. G. Pretlow II, J. M. Giaconia, T. P. Pretlow, S. Schwartz, M. S. Sy, et al. 1999. A new human prostate carcinoma cell line, 22Rv1. In Vitro Cell. Dev. Biol. Animu. 35: 403-409. https://doi.org/10.1007/s11626-999-0115-4
  19. Strasser, A., L. O'Connor, and V. M. Dixit. 2000. Apoptosis signaling. Ann. Rev. Biochem. 69: 217-245. https://doi.org/10.1146/annurev.biochem.69.1.217
  20. Thalmann, G. N., P. E. Anezinis, S. M. Chang, H. E. Zhau, E. E. Kim, V. L. Hopwood, S. Pathak, A. C. von Eschenbach, and L. W. Chung. 1994. Androgen-independent cancer progression and bone metastasis in the LNCaP model of human prostate cancer. Cancer Res. 54: 2577-2581.
  21. Thalmann, G. N., R. A. Sikes, T. T. Wu, A. Degeorges, S. M. Chang, M. Ozen, S. Pathak, and L. W. Chung. 2000. LNCaP progression model of human prostate cancer: Androgenindependence and osseous metastasis. Prostate 44: 91-103. https://doi.org/10.1002/1097-0045(20000701)44:2<91::AID-PROS1>3.0.CO;2-L
  22. Verhaegh, M. E., C. J. Sanders, J. W. Arends, and H. A. Neumann. 1995. Expression of the apoptosis-suppressing protein Bcl-2 in non-melanoma skin cancer. Br. J. Dermatol. 132: 740-744.
  23. Yunis, J. J., G. Frizzera, M. M. Oken, J. McKenna, A. Theologides, and M. Arnesen. 1987. Multiple recurrent genomic defects in follicular lymphoma. A possible model for cancer. N. Engl. J. Med. 316: 79-84. https://doi.org/10.1056/NEJM198701083160204
  24. Zeuthen, J., J. O. Norqaard, P. Avener, M. Fellous, J. Wartiovaara, A. Vaheri, A. Rosen, and B. C. Giovanella. 1980. Characterization of a human ovarian teratocarcinoma-derived cell line. Int. J. Cancer 25: 19-32. https://doi.org/10.1002/ijc.2910250104

Cited by

  1. Pharmacological inhibition of the Notch pathway enhances the efficacy of androgen deprivation therapy for prostate cancer vol.143, pp.3, 2011, https://doi.org/10.1002/ijc.31346