• Title/Summary/Keyword: P2P Agent

Search Result 2,233, Processing Time 0.034 seconds

Electrochemical Characteristics of Activated Carbon Electrode for Supercapacitor (Supercapacitor용 활성탄 전극의 전기 화학적 특성)

  • 김경민;이용욱;강안수
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2002.11a
    • /
    • pp.273-277
    • /
    • 2002
  • In the electrode fabrication of unit cell, we found that optimal the electrochemical characteristics were obtained with at 90 wt.% of activated carbon(BP-20), 5 wt.% of conducting agent(Ppy, Super P) and 5 wt.% of P(VdF-co-HFP)/PVP mixed binder. The electrochemical characteristics of unit cell with Ppy improver were as follows : 37.6 F/g of specific capacitance, 0.98 $\Omega$ of AC-ESR, 2.92 Wh/kg and 6.05 Wh/L of energy density, and 754 W/kg and 1,562 W/L of power density. It was confirmed that internal resistance were reduced due to the increase of electrical conductivity and filling density by the introduction of conductivity agent, and content of conducting agent was suitable in the range of 4~6 wt.%. According to the impedance measurement of the electrode with conductivity agent, we found that it was possible to charge rapidly by the fast steady-state current convergence due to low equivalent series resistance(AC-ESR), fast charge transfer rate at interface between electrode and electrolyte, and low RC time constant.

  • PDF

Effects of contamination by either blood or a hemostatic agent on the shear bond strength of orthodontic buttons

  • Gungor, Ahmet Yalcin;Alkis, Huseyin;Turkkahraman, Hakan
    • The korean journal of orthodontics
    • /
    • v.43 no.2
    • /
    • pp.96-100
    • /
    • 2013
  • Objective: To evaluate the effects of contamination by either blood or a hemostatic agent on the shear bond strength (SBS) of orthodontic buttons. Methods: We used 45 freshly extracted, non-carious, impacted third molars that were divided into 3 groups of 15. Each tooth was etched with 37% phosphoric acid gel for 30 s. Human blood or the blood stopper agent was applied to the tooth surface in groups I and II, respectively. Group III teeth were untreated (controls). Orthodontic buttons were bonded to the teeth using light-curing composite resin. After bonding, the SBS of the button was determined using a Universal testing machine. Any adhesive remaining after debonding was assessed and scored according to the modified adhesive remnant index (ARI). ANOVA with post-hoc Tukey's test was used to determine significant differences in SBS and Fisher's exact test, to determine significant differences in ARI scores among groups. Results: ANOVA indicated a significant difference between groups (p < 0.001). The highest SBS values were measured in group III ($10.73{\pm}0.96$ MPa). The SBS values for teeth in groups I and II were significantly lower than that of group III (p < 0.001). The lowest SBS values were observed in group I teeth ($4.17{\pm}1.11$ MPa) (p < 0.001). Conclusions: Contamination of tooth surfaces with either blood or hemostatic agent significantly decreased the SBS of orthodontic buttons. When the contamination risk is high, it is recommended to use the blood stopper agent when bonding orthodontic buttons on impacted teeth.

Effects of Manufacturing Process Variables on Characteristics of Microcapsules with Self-Healing Agent (제조공정변수에 따른 자가치료용 마이크로캡슐의 특성 고찰)

  • 윤성호
    • Composites Research
    • /
    • v.16 no.2
    • /
    • pp.54-61
    • /
    • 2003
  • In this study, manufacturing process for microcapsules with the self-healing agent was introduced and the characteristics of microcapsules manufactured by varying with various manufacturing process variables were evaluated through a particle size analyzer, an optical microscope, and a TGA. Urea-formaldehyde resin was used for the thin wall of microcapsules and DCPD (dicyclopentadiene) was used for the self-healing agent. The various manufacturing process variables, such as (1) 24hr, 40hr, 48hr, 60hr of the solution time of the EMA copolymer, (2) pH3.5, pH4.0, pH4.5 of the hydrogen ion concentration of the emulsified solution, (3) 400rpm, 500rpm, 600rpm, 1000rpm of the agitation speed of the emulsified solution, (4) $50^{\circ}$, $55^{\circ}$, $60^{\circ}$ of the reaction temperature of the emulsified solution, were considered. According to the results, the particle size distribution of microcapsules was affected on the agitation speed, and the thermal stability of microcapsules was influenced by the solution time of the EMA copolymer, the hydrogen ion concentration, and the reaction temperature of the emulsified solution. Therefore, suitable manufacturing process variables should be applied to obtain thermally stable microcapsules capable of containing the healing agent capable until the thin wall of microcapsules were to be burned.

Chemical cleaning effects on properties and separation efficiency of an RO membrane

  • Tu, Kha L.;Chivas, Allan R.;Nghiem, Long D.
    • Membrane and Water Treatment
    • /
    • v.6 no.2
    • /
    • pp.141-160
    • /
    • 2015
  • This study aims to investigate the impacts of chemical cleaning on the performance of a reverse osmosis membrane. Chemicals used for simulating membrane cleaning include a surfactant (sodium dodecyl sulfate, SDS), a chelating agent (ethylenediaminetetraacetic acid, EDTA), and two proprietary cleaning formulations namely MC3 and MC11. The impact of sequential exposure to multiple membrane cleaning solutions was also examined. Water permeability and the rejection of boron and sodium were investigated under various water fluxes, temperatures and feedwater pH. Changes in the membrane performance were systematically explained based on the changes in the charge density, hydrophobicity and chemical structure of the membrane surface. The experimental results show that membrane cleaning can significantly alter the hydrophobicity and water permeability of the membrane; however, its impacts on the rejections of boron and sodium are marginal. Although the presence of surfactant or chelating agent may cause decreases in the rejection, solution pH is the key factor responsible for the loss of membrane separation and changes in the surface properties. The impact of solution pH on the water permeability can be reversed by applying a subsequent cleaning with the opposite pH condition. Nevertheless, the impacts of solution pH on boron and sodium rejections are irreversible in most cases.

Tetrazolium Violet Induced Apoptosis and Cell Cycle Arrest in Human Lung Cancer A549 Cells

  • Zhang, Xiao-Hong;Zhang, Nan;Lu, Jian-Mei;Kong, Qing-Zhong;Zhao, Yun-Feng
    • Biomolecules & Therapeutics
    • /
    • v.20 no.2
    • /
    • pp.177-182
    • /
    • 2012
  • Tetrazolium violet is a tetrazolium salt and has been proposed as an antitumor agent. In this study, we reported for the first time that tetrazolium violet not only inhibited human lung cancer A549 cell proliferation but also induced apoptosis and blocked cell cycle progression in the G1 phase. The results showed that tetrazolium violet significantly decreased the viability of A549 cells at $5-15{\mu}M$. Tetrazolium violet -induced apoptosis in A549 cells was confirmed by H33258 staining assay. In A549, tetrazolium violet blocked the progression of the cell cycle at G1 phase by inducing p53 expression and further up-regulating p21/WAF1 expression. In addition, an enhancement in Fas/APO-1 and its two forms of ligands, membrane-bound Fas ligand (mFasL) and soluble Fas ligand (sFasL), as well as caspase, were responsible for the apoptotic effect induced by tetrazolium violet. The conclusion of this study is that tetrazolium violet induced p53 expression which caused cell cycle arrest and apoptosis. These findings suggest that tetrazolium violet has strong potential for development as an agent for treatment lung cancer.

Multidimensional Conducting Agents for a High-Energy-Density Anode with SiO for Lithium-Ion Batteries

  • Lee, Suhyun;Go, Nakgyu;Ryu, Ji Heon;Mun, Junyoung
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.244-249
    • /
    • 2019
  • SiO has a high theoretical capacity as a promising anode material candidate for high-energy-density Li-ion batteries. However, its practical application is still not widely used because of the large volume change that occurs during cycling. In this report, an active material containing a mixture of SiO and graphite was used to improve the insufficient energy density of the conventional anode with the support of multidimensional conducting agents. To relieve the isolation of the active materials from volume changes of SiO/graphite electrode, two types of conducting agents, namely, 1-dimensional VGCF and 0-dimensional Super-P, were introduced. The combination of VGCF and Super-P conducting agents efficiently maintained electrical pathways among particles in the electrode during cycling. We found that the electrochemical performances of cycleability and rate capability were greatly improved by employing the conducting agent combinations of VGCF and Super-P compared with the electrode using only single VGCF or single Super-P. We investigated the detailed failure mechanisms by using systematic electrochemical analyses.

Application of Practical Immobilizing Agents for Declining Heavy Metal (loid)s Accumulation by Agricultural Crop (Allium wakegi Araki)

  • Seo, Byoung-Hwan;Kim, Hyun-Uk;Lwin, Chaw Su;Kim, Hyuck Soo;Kim, Kwon-Rae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.4
    • /
    • pp.226-234
    • /
    • 2017
  • In order to reduce the accumulation of toxic metals (As, Cd and Pb) in the chives, various immobilizing agents such as a soil pH change-inducing immobilizing agent (lime), sorption agent (compost, spent mushroom compost), soil pH change and sorption agent (biochar) and, dissolved organic carbon (DOC) coagulator (gypsum) and uncontaminated soil were applied to the contaminated soils in isolation and in combination. Then chives were grown and determined for As, Cd and Pb concentrations accumulated in the edible part at harvest. The Cd and Pb concentrations of the chive plant grown in the contaminated soil (no treatment) exceeded the legislated Korean guideline values (Cd: $0.05mg\;kg^{-1}$, Pb $0.1mg\;kg^{-1}$) and As concentration ($21mg\;kg^{-1}$) was 1,000 times higher than chives plant grown in uncontaminated environment in Korea. Application of lime and gypsum significantly reduced As, Cd and Pb concentrations in all chives examined, due to the increased soil pH and decreased soil DOC. Also, application of combination treatments involving DOC coagulator such as gypsum together with lime decreased As, Cd and Pb concentrations from 21, 1.3 and $9.7mg\;kg^{-1}$ to 2.1, 0.1 and $1.1mg\;kg^{-1}$, respectively. Consequently, it was concluded that pH change-inducing immobilizing agent (lime) which was already well known and DOC coagulator such as gypsum could be used as a promising immobilizing agent for safer chives plant production.

Co-Occurrence of Two Phylogenetic Clades of Pseudoperonospora cubensis, the Causal Agent of Downy Mildew Disease, on Oriental Pickling Melon

  • Lee, Dong Jae;Lee, Jae Sung;Choi, Young-Joon
    • Mycobiology
    • /
    • v.49 no.2
    • /
    • pp.188-195
    • /
    • 2021
  • The genus Pseudoperonospora, an obligate biotrophic group of Oomycota, causes the most destructive foliar downy mildew disease on many economically important crops and wild plants. A previously unreported disease by Pseudoperonospora was found on oriental pickling melon (Cucumis melo var. conomon) in Korea, which is a minor crop cultivated in the temperate climate zone of East Asia, including China, Korea, and Japan. Based on molecular phylogenetic and morphological analyses, the causal agent was identified as Pseudoperonospora cubensis, and its pathogenicity has been proven. Importantly, two phylogenetic clades of P. cubensis, harboring probably two distinct species, were detected within the same plots, suggesting simultaneous coexistence of the two clades. This is the first report of P. cubensis causing downy mildew on oriental pickling melon in Korea, and the confirmation of presence of two phylogenetic clades of this pathogen in Korea. Given the high incidence of P. cubensis and high susceptibility of oriental pickling melon to this disease, phytosanitary measures, including rapid diagnosis and effective control management, are urgently required.

Development of Alkaline Degreasing Agent for Electroplating Pretreatment Process (도금 전처리공정에서 맞춤형 알칼리계 탈지제 개발)

  • Lee, Seung-Bum;Joeng, Koo-Hyung;Lee, Jae-Dong
    • Applied Chemistry for Engineering
    • /
    • v.21 no.3
    • /
    • pp.301-305
    • /
    • 2010
  • In this study, the alkaline degreasing agent was developed for electroplating pretreatment process, and the efficiency and the durability was predicted. The alkaline deeping degreasing agent was prepared by blending sodium hydroxide (NaOH), sodium carbonate ($Na_2CO_3$), sodium silicate ($Na_2SiO_3$), and sodium lauric sulfate (SLS). The performance tests of the degreasing agent were evaluated in the $40{\sim}50^{\circ}C$ of the degreasing temperature and 30~40 min of the degreasing time. The efficiency and durability of the prepared degreasing agent were tested by the waterdrop formation test and Hull-cell plating test. The optimum ratio of alkaline degreasing agent was NaOH (30 g/L) + SLS (6.0 g/L) + $Na_2SiO_3$ (2.0 g/L) + $Na_2CO_3$ (40 g/L). Also, the optimum degreasing conditions were $50^{\circ}C$ of the degreasing temperature and 35 min of the degreasing time.

A Study of The Correlation of The Area Dose with Residual CT Contrast Media and MRI Contrast Media during The Use of General Imaging Automatic Exposure Control System (일반촬영 자동노출제어장치 사용 시 잔존 CT 조영제와 MRI 조영제에 따른 면적선량의 상관성 연구)

  • Hong, Chan-Woo;Park, Jin-Hun;Lee, Jung-Min;Seo, Young-Deuk
    • Journal of the Korean Society of Radiology
    • /
    • v.10 no.8
    • /
    • pp.619-627
    • /
    • 2016
  • The purpose of this study is to investigate the effect of CT contrast agent and MRI contrast agent on the area dose in the body when using automatic exposure control system in general radiography. After making rectangular holes in the center of the abdominal thickness paraffin phantom, CT contrast agent and MRI contrast agent were respectively diluted with physiological saline solution for contrast medium dilution ratio of 10:0, 9:1, 8:2, 7:3, 6:4, 5:5, 4:6, 3:7, 2:8, 1:9, 0:10%. Each experiment was set to 78 kVp, 320 mA, which is the proper condition for KUB photography, and thereafter a total of 30 inspections were made for each dilution ratio using an automatic exposure control device, and the area dose corresponding to the dilution ratio of each contrast agent, Average comparison and correlation analysis were performed on the exposure index. As a result, the CT contrast agent and the MRI contrast agent appeared different in area dose according to the dilution ratio(p<0.05), and as the dilution ratio increased, the area dose increased for CT contrast agent and MRI contrast agent(P<0.05). In each test, the exposure index showed the manufacturer's recommendation of 200-800 EI value, and the exposure index and area dose increased as the area dose increased(p<0.05). In conclusion, CT contrast agent and MRI contrast agent confirmed to increase the area dose by general imaging test using all automatic exposure control device. Therefore, it is considered that it is necessary to perform it after the contrast medium has been excreted sufficiently when using usual imaging test after using the contrast agent in CT and MRI examination.