DOI QR코드

DOI QR Code

Chemical cleaning effects on properties and separation efficiency of an RO membrane

  • Tu, Kha L. (Strategic Water Infrastructure Laboratory and GeoQuEST Research Centre, School of Civil, Mining, and Environmental Engineering, University of Wollongong) ;
  • Chivas, Allan R. (GeoQuEST Research Centre, School of Earth and Environmental Sciences, University of Wollongong) ;
  • Nghiem, Long D. (Strategic Water Infrastructure Laboratory and GeoQuEST Research Centre, School of Civil, Mining, and Environmental Engineering, University of Wollongong)
  • Received : 2014.08.21
  • Accepted : 2014.12.30
  • Published : 2015.03.25

Abstract

This study aims to investigate the impacts of chemical cleaning on the performance of a reverse osmosis membrane. Chemicals used for simulating membrane cleaning include a surfactant (sodium dodecyl sulfate, SDS), a chelating agent (ethylenediaminetetraacetic acid, EDTA), and two proprietary cleaning formulations namely MC3 and MC11. The impact of sequential exposure to multiple membrane cleaning solutions was also examined. Water permeability and the rejection of boron and sodium were investigated under various water fluxes, temperatures and feedwater pH. Changes in the membrane performance were systematically explained based on the changes in the charge density, hydrophobicity and chemical structure of the membrane surface. The experimental results show that membrane cleaning can significantly alter the hydrophobicity and water permeability of the membrane; however, its impacts on the rejections of boron and sodium are marginal. Although the presence of surfactant or chelating agent may cause decreases in the rejection, solution pH is the key factor responsible for the loss of membrane separation and changes in the surface properties. The impact of solution pH on the water permeability can be reversed by applying a subsequent cleaning with the opposite pH condition. Nevertheless, the impacts of solution pH on boron and sodium rejections are irreversible in most cases.

Keywords

References

  1. Akin, O. and Temelli, F. (2011), "Probing the hydrophobicity of commercial reverse osmosis membranes produced by interfacial polymerization using contact angle, XPS, FTIR, FE-SEM and AFM", Desalination, 278(1-3), 387-396. https://doi.org/10.1016/j.desal.2011.05.053
  2. Al-Amoudi, A. (2013), "Effect of chemical cleaning agents on virgin nanofiltration membrane as characterized by positron annihilation spectroscopy", Sep. Purif. Technol., 110, 51-56. https://doi.org/10.1016/j.seppur.2013.02.005
  3. Al-Amoudi, A. and Lovitt, R.W. (2007), "Fouling strategies and the cleaning system of NF membranes and factors affecting cleaning efficiency", J. Membr. Sci., 303(1-2), 4-28. https://doi.org/10.1016/j.memsci.2007.06.002
  4. Al-Amoudi, A., Williams, P., Mandale, S. and Lovitt, R.W. (2007), "Cleaning results of new and fouled nanofiltration membrane characterized by zeta potential and permeability", Sep. Purif. Technol., 54(2), 234-240. https://doi.org/10.1016/j.seppur.2006.09.014
  5. Al-Amoudi, A., Williams, P., Al-Hobaib, A.S. and Lovitt, R.W. (2008), "Cleaning results of new and fouled nanofiltration membrane characterized by contact angle, updated DSPM, flux and salts rejection", Appl. Surf. Sci., 254(13), 3983-3992. https://doi.org/10.1016/j.apsusc.2007.12.052
  6. Amar, N.B., Saidani, H., Palmeri, J. and Deratani, A. (2009), "Effect of temperature on the rejection of neutral and charged solutes by Desal 5 DK nanofiltration membrane", Desalination, 246(1-3), 294-303. https://doi.org/10.1016/j.desal.2008.03.056
  7. Ang, W.S., Lee, S. and Elimelech, M. (2006), "Chemical and physical aspects of cleaning of organic-fouled reverse osmosis membranes", J. Membr. Sci., 272(1-2), 198-210. https://doi.org/10.1016/j.memsci.2005.07.035
  8. Bernstein, R., Belfer, S. and Freger, V. (2011), "Toward improved boron removal in RO by membrane modification: Feasibility and challenges", Environ. Sci. Technol., 45(8), 3613-3620. https://doi.org/10.1021/es103991u
  9. Braghetta, A., DiGiano, F.A. and Ball, W.P. (1997), "Nanofiltration of natural organic matter: pH and ionic strength effects", J. Environ. Eng., ASCE, 123(7), 628-641. https://doi.org/10.1061/(ASCE)0733-9372(1997)123:7(628)
  10. Childress, A.E. and Elimelech, M. (1996), "Effect of solution chemistry on the surface charge of polymeric reverse osmosis and nanofiltration membranes", J. Membr. Sci., 119(2), 253-268. https://doi.org/10.1016/0376-7388(96)00127-5
  11. Childress, A.E. and Elimelech, M. (2000), "Relating nanofiltration membrane performance to membrane charge (electrokinetic) characteristics", Environ. Sci. Technol., 34(17), 3710-3716. https://doi.org/10.1021/es0008620
  12. Elimelech, M. and Phillip, W.A. (2011), "The future of seawater desalination: Energy, technology, and the environment", Science, 333(6043), 712-717. https://doi.org/10.1126/science.1200488
  13. Elimelech, M., Chen, W.H. and Waypa, J.J. (1994), "Measuring the zeta (electrokinetic) potential of reverse osmosis membranes by a streaming potential analyzer", Desalination, 95(3), 269-286. https://doi.org/10.1016/0011-9164(94)00064-6
  14. Fritzmann, C., Lowenberg, J., Wintgens, T. and Melin, T. (2007), "State-of-the-art of reverse osmosis desalination", Desalination, 216(1-3), 1-76. https://doi.org/10.1016/j.desal.2006.12.009
  15. Fujioka, T., Khan, S.J., McDonald, J.A., Roux, A., Poussade, Y., Drewes, J.E. and Nghiem, L.D. (2013), "N-nitrosamine rejection by reverse osmosis: Effects of membrane exposure to chemical cleaning reagents", Desalination, 343, 60-66.
  16. Hoang, T., Stevens, G. and Kentish, S. (2010), "The effect of feed pH on the performance of a reverse osmosis membrane", Desalination, 261(1-2), 99-103. https://doi.org/10.1016/j.desal.2010.05.024
  17. Hung, P.V.X., Cho, S.-H. and Moon, S.-H. (2009), "Prediction of boron transport through seawater reverse osmosis membranes using solution-diffusion model", Desalination, 247(1-3), 33-44. https://doi.org/10.1016/j.desal.2008.12.010
  18. Hurwitz, G., Guillen, G.R. and Hoek, E.M.V. (2010), "Probing polyamide membrane surface charge, zeta potential, wettability, and hydrophilicity with contact angle measurements", J. Membr. Sci., 349(1-2), 349-357. https://doi.org/10.1016/j.memsci.2009.11.063
  19. Hydranautics (2011), Foulants and cleaning procedures for composite polyamide RO membrane elements (ESPA, ESNA, CPA, LFC, NANO and SWC), TSB107.21.
  20. Kang, G.-D., Gao, C.-J., Chen, W.-D., Jie, X.-M., Cao, Y.-M. and Yuan, Q. (2007), "Study on hypochlorite degradation of aromatic polyamide reverse osmosis membrane", J. Membr. Sci., 300(1-2), 165-171. https://doi.org/10.1016/j.memsci.2007.05.025
  21. Kaykioglu, G., Coban, A., Debik, E., Kayacan, B.B. and Koyuncu, I. (2012), "The evaluation of fouling effects in membrane process dealing with the biologically pre-treated textile effluents", Desal. Water Treat., 40(1-3), 254-259. https://doi.org/10.1080/19443994.2012.671255
  22. Kezia, K., Lee, J., Hill, A.J. and Kentish, S.E. (2013), "Convective transport of boron through a brackish water reverse osmosis membrane", J. Membr. Sci., 445, 160-169. https://doi.org/10.1016/j.memsci.2013.05.041
  23. Kim, C.K., Kim, J.H., Roh, I.J. and Kim, J.J. (2000), "The changes of membrane performance with polyamide molecular structure in the reverse osmosis process", J. Membr. Sci., 165(2), 189-199. https://doi.org/10.1016/S0376-7388(99)00232-X
  24. Kimura, K., Hane, Y., Watanabe, Y., Amy, G. and Ohkuma, N. (2004), "Irreversible membrane fouling during ultrafiltration of surface water", Water Res., 38(14-15), 3431-3441. https://doi.org/10.1016/j.watres.2004.05.007
  25. Koseoglu, H., Kabay, N., Yuksel, M., Sarp, S., Arar, O. and Kitis, M. (2008), "Boron removal from seawater using high rejection SWRO membranes - impact of pH, feed concentration, pressure, and cross-flow velocity", Desalination, 227(1-3), 253-263. https://doi.org/10.1016/j.desal.2007.06.029
  26. Li, Q. and Elimelech, M. (2004), "Organic fouling and chemical cleaning of nanofiltration membranes: Measurements and mechanisms", Environ. Sci. Technol., 38(17), 4683-4693. https://doi.org/10.1021/es0354162
  27. Li, X., Li, J., Fu, X., Wickramasinghe, R. and Chen, J. (2005), "Chemical cleaning of PS ultrafilters fouled by the fermentation broth of glutamic acid", Sep. Purif. Technol., 42(2), 181-187. https://doi.org/10.1016/j.seppur.2004.07.005
  28. Li, Q., Xu, Z. and Pinnau, I. (2007), "Fouling of reverse osmosis membranes by biopolymers in wastewater secondary effluent: Role of membrane surface properties and initial permeate flux", J. Membr. Sci., 290(1-2), 173-181. https://doi.org/10.1016/j.memsci.2006.12.027
  29. Liikanen, R., Yli-Kuivila, J. and Laukkanen, R. (2002), "Efficiency of various chemical cleanings for nanofiltration membrane fouled by conventionally-treated surface water", J. Membr. Sci., 195(2), 265-276. https://doi.org/10.1016/S0376-7388(01)00569-5
  30. Madaeni, S.S. and Samieirad, S. (2010), "Chemical cleaning of reverse osmosis membrane fouled by wastewater", Desalination, 257(1-3), 80-86. https://doi.org/10.1016/j.desal.2010.03.002
  31. Madaeni, S.S., Mohamamdi, T. and Kazemi Moghadam, M. (2001), "Chemical cleaning of reverse osmosis membranes", Desalination, 134(1-3), 77-82. https://doi.org/10.1016/S0011-9164(01)00117-5
  32. Manttari, M., Pihlajamaki, A. and Nystrom, M. (2006), "Effect of pH on hydrophilicity and charge and their effect on the filtration efficiency of NF membranes at different pH", J. Membr. Sci., 280(1-2), 311-320. https://doi.org/10.1016/j.memsci.2006.01.034
  33. Schaep, J., Vandecasteele, C., Wahab, M.A. and Richard, B.W. (2001), "Modelling the retention of ionic components for different nanofiltration membranes", Sep. Purif. Technol., 22-23(1-3), 169-179. https://doi.org/10.1016/S1383-5866(00)00163-5
  34. Simon, A., Price, W.E. and Nghiem, L.D. (2012), "Effects of chemical cleaning on the nanofiltration of pharmaceutically active compounds (PhACs)", Sep. Purif. Technol., 88, 208-215. https://doi.org/10.1016/j.seppur.2011.12.009
  35. Simon, A., McDonald, J.A., Khan, S.J., Price, W.E. and Nghiem, L.D. (2013a), "Effects of caustic cleaning on pore size of nanofiltration membranes and their rejection of trace organic chemicals", J. Membr. Sci., 447, 153-162. https://doi.org/10.1016/j.memsci.2013.07.013
  36. Simon, A., Price, W.E. and Nghiem, L.D. (2013b), "Influence of formulated chemical cleaning reagents on the surface properties and separation efficiency of nanofiltration membranes", J. Membr. Sci., 432, 73-82. https://doi.org/10.1016/j.memsci.2012.12.029
  37. Tang, C.Y., Kwon, Y.-N. and Leckie, J.O. (2009), "Effect of membrane chemistry and coating layer on physiochemical properties of thin film composite polyamide RO and NF membranes: II. Membrane physiochemical properties and their dependence on polyamide and coating layers", Desalination, 242(1-3), 168-182. https://doi.org/10.1016/j.desal.2008.04.004
  38. Teixeira, M.R., Rosa, M.J. and Nystrom, M. (2005), "The role of membrane charge on nanofiltration performance", J. Membr. Sci., 265(1-2), 160-166. https://doi.org/10.1016/j.memsci.2005.04.046
  39. Tian, J.y., Chen, Z.l., Yang, Y.l., Liang, H., Nan, J. and Li, G.b. (2010), "Consecutive chemical cleaning of fouled PVC membrane using NaOH and ethanol during ultrafiltration of river water", Water Res., 44(1), 59-68. https://doi.org/10.1016/j.watres.2009.08.053
  40. Tu, K.L., Nghiem, L.D. and Chivas, A.R. (2011), "Coupling effects of feed solution pH and ionic strength on the rejection of boron by NF/RO membranes", Chem. Eng. J., 168(2), 700-706. https://doi.org/10.1016/j.cej.2011.01.101
  41. Tu, K.L., Fujioka, T., Khan, S.J., Poussade, Y., Roux, A., Drewes, J.E., Chivas, A.R. and Nghiem, L.D. (2013), "Boron as a surrogate for N-nitrosodimethylamine rejection by reverse osmosis membranes in potable water reuse applications", Environ. Sci. Technol., 47(12), 6425-6430. https://doi.org/10.1021/es400732x
  42. Van der Bruggen, B., Hawrijk, I., Cornelissen, E. and Vandecasteele, C. (2003), "Direct nanofiltration of surface water using capillary membranes: comparison with flat sheet membranes", Sep. Purif. Technol., 31(2), 193-201. https://doi.org/10.1016/S1383-5866(02)00184-3
  43. Weis, A., Bird, M.R. and Nystrom, M. (2003), "The chemical cleaning of polymeric UF membranes fouled with spent sulphite liquor over multiple operational cycles", J. Membr. Sci., 216(1-2), 67-79. https://doi.org/10.1016/S0376-7388(03)00047-4
  44. Wintgens, T., Melin, T., Schafer, A., Khan, S., Muston, M., Bixio, D. and Thoeye, C. (2005), "The role of membrane processes in municipal wastewater reclamation and reuse", Desalination, 178(1-3), 1-11. https://doi.org/10.1016/j.desal.2004.12.014

Cited by

  1. Supramolecular formations and structural transformations in porous polyethersulfone/polyamide film materials vol.53, pp.5, 2017, https://doi.org/10.1134/S2070205117050112
  2. Antifouling, fouling release and antimicrobial materials for surface modification of reverse osmosis and nanofiltration membranes vol.6, pp.2, 2018, https://doi.org/10.1039/C7TA08627J
  3. UF pretreatment at elevated temperature within the scheme of hybrid desalination: Performance and environmental impact vol.8, pp.3, 2015, https://doi.org/10.12989/mwt.2017.8.3.279
  4. Reactivity of the Polyamide Membrane Monomer with Free Chlorine: Reaction Kinetics, Mechanisms, and the Role of Chloride vol.53, pp.14, 2015, https://doi.org/10.1021/acs.est.9b01446
  5. Influence of Chemical Cleaning on Physicochemical Characteristics and Ion Rejection by Thin Film Composite Nanofiltration Membranes vol.53, pp.17, 2019, https://doi.org/10.1021/acs.est.9b02738
  6. Optimization of chemical cleaning of discarded reverse osmosis membranes for reuse vol.12, pp.1, 2015, https://doi.org/10.12989/mwt.2021.12.1.001