DOI QR코드

DOI QR Code

Multidimensional Conducting Agents for a High-Energy-Density Anode with SiO for Lithium-Ion Batteries

  • Lee, Suhyun (Department of Energy and Chemical Engineering, Incheon National University) ;
  • Go, Nakgyu (Department of Energy and Chemical Engineering, Incheon National University) ;
  • Ryu, Ji Heon (Graduate School of Knowledge-based Technology, Korea Polytechnic University) ;
  • Mun, Junyoung (Department of Energy and Chemical Engineering, Incheon National University)
  • Received : 2018.12.20
  • Accepted : 2019.02.26
  • Published : 2019.06.30

Abstract

SiO has a high theoretical capacity as a promising anode material candidate for high-energy-density Li-ion batteries. However, its practical application is still not widely used because of the large volume change that occurs during cycling. In this report, an active material containing a mixture of SiO and graphite was used to improve the insufficient energy density of the conventional anode with the support of multidimensional conducting agents. To relieve the isolation of the active materials from volume changes of SiO/graphite electrode, two types of conducting agents, namely, 1-dimensional VGCF and 0-dimensional Super-P, were introduced. The combination of VGCF and Super-P conducting agents efficiently maintained electrical pathways among particles in the electrode during cycling. We found that the electrochemical performances of cycleability and rate capability were greatly improved by employing the conducting agent combinations of VGCF and Super-P compared with the electrode using only single VGCF or single Super-P. We investigated the detailed failure mechanisms by using systematic electrochemical analyses.

Keywords

E1JTC5_2019_v10n2_244_f0001.png 이미지

Fig. 1. FE-SEM images from the pristine composite electrodes with a) VGCF, b ) VGCF/Super-P (2:1), c ) VGCF/Super-P (1:2), and d) Super-P. e), f), g), h) The magnified SEM images of the VGCF, VGCF/Super-P (2:1), VGCF/Super-P (1:2) and Super-P electrodes.

E1JTC5_2019_v10n2_244_f0002.png 이미지

Fig. 2. Electronic conductivities from pellets having SiO, graphite and conducting agents by a 4-probe method under various pressures from 200 to 600 kgf cm-2.

E1JTC5_2019_v10n2_244_f0003.png 이미지

Fig. 3. GITT voltage curves from the cells having various conducting agents.

E1JTC5_2019_v10n2_244_f0004.png 이미지

Fig. 4. the 1st voltage curves a) in the potential range from 5 mV to 2 V and b) with the limitation of 450 mAh g-1·c) Coulombic efficiencies by using a higher charge capacity than 450 mAh g-1 by combination with a) and b).

E1JTC5_2019_v10n2_244_f0005.png 이미지

Fig. 5. Cycleability with the cells having VGCF, VGCF/Super-P (2:1), VGCF/Super-P (1:2), and Super-P. The current density was 0.5 C for discharge and 0.2 C for charge (1C = 450 mA g-1). Filled and blank circles represent for discharge and charge capacity, respectively.

E1JTC5_2019_v10n2_244_f0006.png 이미지

Fig. 6. Discharge voltage curve from cells having various conducting agent systems: a) VGCF, b) VGCF:Super-P (2:1), c) Super-P.

References

  1. H.H. Sun, A. Manthiram, Chem. Mat., 2017, 29(19), 8486-8493. https://doi.org/10.1021/acs.chemmater.7b03268
  2. S.H. Jang, J. Mun, D.-K. Kang, T. Yim, J. Electrochem. Sci. Technol., 2017, 8(2), 162-168. https://doi.org/10.5229/JECST.2017.8.2.162
  3. A. Riaz, K.N. Jung, J.W. Lee, J. Electrochem. Sci. Technol., 2015, 6(2), 50-58. https://doi.org/10.5229/JECST.2015.6.2.50
  4. A. Tron, H. Kang, J. Kim, J. Mun, J. Electrochem. Sci. Technol., 2018, 9(1), 60-68. https://doi.org/10.5229/JECST.2018.9.1.60
  5. A. Tron, T. Yoon, Y.D. Park, S.M. Oh, J. Mun, J. Nanosci. Nanotechnol., 2017, 17(7), 4977-4982. https://doi.org/10.1166/jnn.2017.13737
  6. S. Lim, H. Chu, K. Lee, T. Yim, Y.-J. Kim, J. Mun, T.-H. Kim, ACS Appl. Mater. Interfaces, 2015, 7(42), 23545-23553. https://doi.org/10.1021/acsami.5b06682
  7. S.J. Choi, T. Yim, W. Cho, J. Mun, Y.N. Jo, K.J. Kim, G. Jeong, T.-H. Kim, Y.-J. Kim, ACS. Sustain. Chem. Eng., 2016, 4(12), 6362-6370. https://doi.org/10.1021/acssuschemeng.6b00920
  8. S. Lim, K. Lee, I. Shin, A. Tron, J. Mun, T. Yim, T.-H. Kim, J. Power Sources, 2017, 360, 585-592. https://doi.org/10.1016/j.jpowsour.2017.06.049
  9. K. Lee, S. Lim, A. Tron, J. Mun, Y.-J. Kim, T. Yim, T.-H. Kim, RSC Adv., 2016, 6(103), 101622-101625. https://doi.org/10.1039/C6RA23805J
  10. M. Zhang, T. Zhang, Y. Ma, Y. Chen, Energy Storage Mater., 2016, 4, 1-14. https://doi.org/10.1016/j.ensm.2016.02.001
  11. H. Wu, G. Chan, J.W. Choi, I. Ryu, Y. Yao, M.T. McDowell, S.W. Lee, A. Jackson, Y. Yang, L. Hu, Y. Cui, Nat Nano, 2012, 7(5), 310-315. https://doi.org/10.1038/nnano.2012.35
  12. N. Dimov, S. Kugino, M. Yoshio, Electrochim. Acta, 2003, 48(11), 1579-1587. https://doi.org/10.1016/S0013-4686(03)00030-6
  13. S.D. Beattie, M.J. Loveridge, M.J. Lain, S. Ferrari, B.J. Polzin, R. Bhagat, R. Dashwood, J. Power Sources, 2016, 302, 426-430. https://doi.org/10.1016/j.jpowsour.2015.10.066
  14. R. Zhou, R. Fan, Z. Tian, Y. Zhou, H. Guo, L. Kou, D. Zhang, J. Alloys Compd., 2016, 658, 91-97. https://doi.org/10.1016/j.jallcom.2015.10.217
  15. B.-C. Yu, Y. Hwa, J.-H. Kim, H.-J. Sohn, J. Power Sources, 2014, 260, 174-179. https://doi.org/10.1016/j.jpowsour.2014.02.109
  16. J. Yang, Y. Wang, W. Li, L. Wang, Y. Fan, W. Jiang, W. Luo, Y. Wang, B. Kong, C. Selomulya, H.K. Liu, S.X. Dou, D. Zhao, Adv. Mater., 2017, 29(48), 1700523. https://doi.org/10.1002/adma.201700523
  17. X. Fan, J. Ji, X. Jiang, W. Wang, Z. Liu, RSC Adv., 2016, 6(82), 78559-78563. https://doi.org/10.1039/C6RA13620F
  18. T. Kim, Y.H. Mo, K.S. Nahm, S.M. Oh, J. Power Sources, 2006, 162(2), 1275-1281. https://doi.org/10.1016/j.jpowsour.2006.07.062
  19. T. Xu, J. Zhang, C. Yang, H. Luo, B. Xia, X. Xie, J. Alloys Compd., 2018, 738, 323-330. https://doi.org/10.1016/j.jallcom.2017.12.162
  20. L. Guo, H. He, Y. Ren, C. Wang, M. Li, Chem. Eng. J., 2018, 335, 32-40. https://doi.org/10.1016/j.cej.2017.10.145
  21. J. Zhang, J. Gu, H. He, M. Li, J. Solid State Electrochem., 2017, 21(8), 2259-2267. https://doi.org/10.1007/s10008-017-3578-3
  22. L. Wu, H. Zhou, J. Yang, X. Zhou, Y. Ren, Y. Nie, S. Chen, J. Alloys Compd., 2017, 716, 204-209. https://doi.org/10.1016/j.jallcom.2017.05.057
  23. Z. Li, Q. He, L. He, P. Hu, W. Li, H. Yan, X. Peng, C. Huang, L. Mai, J. Mater. Chem. A, 2017, 5(8), 4183-4189. https://doi.org/10.1039/C6TA10583A
  24. K. Kim, H. Choi, J.H. Kim, Appl. Surf. Sci., 2017, 416, 527-535. https://doi.org/10.1016/j.apsusc.2017.04.199