• Title/Summary/Keyword: P. quinquefolius

Search Result 47, Processing Time 0.025 seconds

Quantitative Analysis of Dammarane-type Ginsenosides in Different Ginseng Products

  • Lee, Dong Gu;Quilantang, Norman G.;Lee, Ju Sung;Geraldino, Paul John L.;Kim, Hyun Young;Lee, Sanghyun
    • Natural Product Sciences
    • /
    • v.24 no.4
    • /
    • pp.229-234
    • /
    • 2018
  • Ginseng products available in different forms and preparations are reported to have varied bioactivities and chemical compositions. In our previous study, four new dammarane-type ginsenosides were isolated from Panax ginseng, which are ginsenoside Rg18 (1), 6-acetyl ginsenoside Rg3 (2), ginsenoside Rs11 (3), and ginsenoside Re7 (4). Accordingly, the goal of this study was to determine the distribution and content of these newly characterized ginsenosides in different ginseng products. The content of compounds 1 - 4 in different ginseng products was determined via HPLC-UV. The samples included ginseng roots from different ginseng species, roots harvested from different localities in Korea, and samples harvested at different cultivation ages and processed under different manufacturing methods. The four ginsenosides were present at varying concentrations in the different ginseng samples examined. The variations in their content could be attributed to species variation, and differences in cultivation conditions and manufacturing methods. The total concentration of compounds 1 - 4 were highest in ginseng obtained from Geumsan ($185{\mu}g/g$), white-6 yr ginseng ($150{\mu}g/g$), and P. quinquefolius ($186{\mu}g/g$). The results of this study provide a basis for the optimization of cultivation conditions and manufacturing methods to maximize the yield of the four new ginsenosides in ginseng.

Phenological growth stages of Korean ginseng (Panax ginseng) according to the extended BBCH scale

  • Kim, Yun-Soo;Park, Chol-Soo;Lee, Dong-Yun;Lee, Joon-Soo;Lee, Seung-Hwan;In, Jun-Gyo;Hong, Tae-Kyun
    • Journal of Ginseng Research
    • /
    • v.45 no.4
    • /
    • pp.527-534
    • /
    • 2021
  • Background: Phenological studies are a prerequisite for accomplishing higher productivity and better crop quality in cultivated plants. However, there are no phenological studies on Panax ginseng that improve its production yield. This study aims to redefine the phenological growth stages of P. ginseng based on the existing Biologische Bundesanstalt, Bundessortenamt und Chemische Industrie (BBCH) scale and proposes a disease control reference. Methods: This study was conducted at the Korea Ginseng Corporation Experiment Station in Gyeonggi province, South Korea. Phenological observations were performed once weekly or twice monthly, based on the developmental stages. The existing BBCH scale with a three-digit code was used to redefine and update P. ginseng's phenological growth codes. Results: The phenological description is divided into eight principal growth stages: three for vegetative growth (perennating bud, aerial shoot, and root development), four for reproductive growth (reproductive organ development, flowering, fruit development, and fruit maturation), and one for senescence according to the extended BBCH scale. A total of 58 secondary growth stages were described within the eight principal growth stages. Under each secondary growth stage, four mesostages are also taken into account, which contains the distinct patterns of the phenological characteristics in ginseng varieties and the process of transplanting seedlings. A practical management program for disease control was also proposed by using the BBCH code and the phenological data proposed in this work. Conclusion: The study introduces an extended BBCH scale for the phenological research of P. ginseng.

Antiviral Potential of the Genus Panax: An updated review on their effects and underlying mechanism of action

  • Yibo Zhang;Xuanlei Zhong;Zhichao Xi;Yang Li;Hongxi Xu
    • Journal of Ginseng Research
    • /
    • v.47 no.2
    • /
    • pp.183-192
    • /
    • 2023
  • Viral infections are known as one of the major factors causing death. Ginseng is a medicinal plant that demonstrated a wide range of antiviral potential, and saponins are the major bioactive ingredients in the genus Panax with vast therapeutic potential. Studies focusing on the antiviral activity of the genus Panax plant-derived agents (extracts and saponins) and their mechanisms were identified and summarized, including contributions mainly from January 2016 until January 2022. P. ginseng, P. notoginseng, and P. quinquefolius were included in the review as valuable medicinal herbs against infections with 14 types of viruses. Reports from 9 extracts and 12 bioactive saponins were included, with 6 types of protopanaxadiol (PPD) ginsenosides and 6 types of protopanaxatriol (PPT) ginsenosides. The mechanisms mainly involved the inhibition of viral attachment and replication, the modulation of immune response by regulating signaling pathways, including the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway, cystathionine γ-lyase (CSE)/hydrogen sulfide (H2S) pathway, phosphoinositide-dependent kinase-1 (PDK1)/ protein kinase B (Akt) signaling pathway, c-Jun N-terminal kinase (JNK)/activator protein-1 (AP-1) pathway, and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway. This review includes detailed information about the mentioned antiviral effects of the genus Panax extracts and saponins in vitro and in vivo, and in human clinical trials, which provides a scientific basis for ginseng as an adjunctive therapeutic drug or nutraceutical.

Genetic Diversity and Pathogenicity of Cylindrocarpon destructans Isolates Obtained from Korean Panax ginseng

  • Song, Jeong Young;Seo, Mun Won;Kim, Sun Ick;Nam, Myeong Hyeon;Lim, Hyoun Sub;Kim, Hong Gi
    • Mycobiology
    • /
    • v.42 no.2
    • /
    • pp.174-180
    • /
    • 2014
  • We analyzed the genetic diversity of Cylindrocarpon destructans isolates obtained from Korean ginseng (i.e., Panax ginseng) roots by performing virulence tests and nuclear ribosomal gene internal transcribed spacer (ITS) and mitochondrial small subunit (mt SSU) rDNA sequence analysis. The phylogenetic relationship analysis performed using ITS DNA sequences and isolates from other hosts helped confirm that all the Korean C. destructans isolates belonged to Nectria/Neonectria radicicola complex. The results of in vivo and ex vivo virulence tests showed that the C. destructans isolates could be divided into two groups according to their distinctive difference in virulence and the genetic diversity. The highly virulent Korean isolates in pathogenicity group II (PG II), together with foreign isolates from P. ginseng and P. quinquefolius, formed a single group. The weakly virulent isolates in pathogenicity group I, together with the foreign isolates from other host plants, formed another group and exhibited a greater genetic diversity than the isolates of PG II, as confirmed by the mt SSU rDNA sequence analysis. In addition, as the weakly virulent Korean isolates were genetically very similar to the foreign isolates from other hosts, they were likely to originate from hosts other than the ginseng plants.

Quantitative aspects of the hydrolysis of ginseng saponins: Application in HPLC-MS analysis of herbal products

  • Abashev, Mikhail;Stekolshchikova, Elena;Stavrianidi, Andrey
    • Journal of Ginseng Research
    • /
    • v.45 no.2
    • /
    • pp.246-253
    • /
    • 2021
  • Background: Ginseng is one of the most valuable herbal supplements. It is challenging to perform quality control of ginseng products due to the diversity of bioactive saponins in their composition. Acid or alkaline hydrolysis is often used for the structural elucidation of these saponins and sugars in their side chains. Complete transformation of the original ginsenosides into their aglycones during the hydrolysis is one of the ways to determine a total saponin group content. The main hurdle of this approach is the formation of various by-products that was reported by many authors. Methods: Separate HPLC assessment of the total protopanaxadiol, protopanaxatriol and ocotillol ginsenoside contents is a viable alternative to the determination of characteristic biomarkers of these saponin groups, such as ginsenoside Rf and pseudoginsenoside F11, which are commonly used for authentication of P. ginseng Meyer and P. quinquefolius L. samples respectively. Moreover, total ginsenoside content is an ideal aggregated parameter for standardization and quality control of ginseng-based medicines, because it can be directly applied for saponin dosage calculation. Results: Different hydrolysis conditions were tested to develop accurate quantification method for the elucidation of total ginsenoside contents in herbal products. Linearity, limits of quantification, limits of detection, accuracy and precision were evaluated for the developed HPLC-MS method. Conclusion: Alkaline hydrolysis results in fewer by-products than sugar elimination in acidic conditions. An equimolar response, as a key parameter for quantification, was established for several major ginsenosides. The developed approach has shown acceptable results in the analysis of several different herbal products.

Comprehensive comparative analysis of chloroplast genomes from seven Panax species and development of an authentication system based on species-unique single nucleotide polymorphism markers

  • Nguyen, Van Binh;Giang, Vo Ngoc Linh;Waminal, Nomar Espinosa;Park, Hyun-Seung;Kim, Nam-Hoon;Jang, Woojong;Lee, Junki;Yang, Tae-Jin
    • Journal of Ginseng Research
    • /
    • v.44 no.1
    • /
    • pp.135-144
    • /
    • 2020
  • Background: Panax species are important herbal medicinal plants in the Araliaceae family. Recently, we reported the complete chloroplast genomes and 45S nuclear ribosomal DNA sequences from seven Panax species, two (P. quinquefolius and P. trifolius) from North America and five (P. ginseng, P. notoginseng, P. japonicus, P. vietnamensis, and P. stipuleanatus) from Asia. Methods: We conducted phylogenetic analysis of these chloroplast sequences with 12 other Araliaceae species and comprehensive comparative analysis among the seven Panax whole chloroplast genomes. Results: We identified 1,128 single nucleotide polymorphisms (SNP) in coding gene sequences, distributed among 72 of the 79 protein-coding genes in the chloroplast genomes of the seven Panax species. The other seven genes (including psaJ, psbN, rpl23, psbF, psbL, rps18, and rps7) were identical among the Panax species. We also discovered that 12 large chloroplast genome fragments were transferred into the mitochondrial genome based on sharing of more than 90% sequence similarity. The total size of transferred fragments was 60,331 bp, corresponding to approximately 38.6% of chloroplast genome. We developed 18 SNP markers from the chloroplast genic coding sequence regions that were not similar to regions in the mitochondrial genome. These markers included two or three species-specific markers for each species and can be used to authenticate all the seven Panax species from the others. Conclusion: The comparative analysis of chloroplast genomes from seven Panax species elucidated their genetic diversity and evolutionary relationships, and 18 species-specific markers were able to discriminate among these species, thereby furthering efforts to protect the ginseng industry from economically motivated adulteration.

Effect of coadministration of enriched Korean Red Ginseng (Panax ginseng) and American ginseng (Panax quinquefolius L) on cardiometabolic outcomes in type-2 diabetes: A randomized controlled trial

  • Jovanovski, Elena;Smircic-Duvnjak, Lea;Komishon, Allison;Au-Yeung, Fei (Rodney);Sievenpiper, John L.;Zurbau, Andreea;Jenkins, Alexandra L.;Sung, Mi-Kyung;Josse, Robert;Li, Dandan;Vuksan, Vladimir
    • Journal of Ginseng Research
    • /
    • v.45 no.5
    • /
    • pp.546-554
    • /
    • 2021
  • Background: Diabetes mellitus and hypertension often occur together, amplifying cardiovascular disease (CVD) risk and emphasizing the need for a multitargeted treatment approach. American ginseng (AG) and Korean Red Ginseng (KRG) species could improve glycemic control via complementary mechanisms. Additionally, a KRG-inherent component, ginsenoside Rg3, may moderate blood pressure (BP). Our objective was to investigate the therapeutic potential of coadministration of Rg3-enriched Korean Red Ginseng (Rg3-KRG) and AG, added to standard of care therapy, in the management of hypertension and cardiometabolic risk factors in type-2 diabetes. Methods: Within a randomized controlled, parallel design of 80 participants with type-2 diabetes (HbA1c: 6.5-8%) and hypertension (systolic BP: 140-160 mmHg or treated), supplementation with either 2.25 g/day of combined Rg3-KRG + AG or wheat-bran control was assessed over a 12-wk intervention period. The primary endpoint was ambulatory 24-h systolic BP. Additional endpoints included further hemodynamic assessment, glycemic control, plasma lipids and safety monitoring. Results: Combined ginseng intervention generated a mean ± SE decrease in primary endpoint of 24-h systolic BP (-3.98 ± 2.0 mmHg, p = 0.04). Additionally, there was a greater reduction in HbA1c (-0.35 ± 0.1% [-3.8 ± 1.1 mmol/mol], p = 0.02), and change in blood lipids: total cholesterol (-0.50 ± 0.2 mmol/l, p = 0.01), non-HDL-C (-0.54 ± 0.2 mmol/l, p = 0.01), triglycerides (-0.40 ± 0.2 mmol/l, p = 0.02) and LDL-C (-0.35 ± 0.2 mmol/l, p = 0.06) at 12 wks, relative to control. No adverse safety outcomes were observed. Conclusion: Coadministration of Rg3-KRG + AG is an effective addon for improving BP along with attaining favorable cardiometabolic outcomes in individuals with type 2 diabetes. Ginseng derivatives may offer clinical utility when included in the polypharmacy and lifestyle treatment of diabetes. Clinical trial registration: Clinicaltrials.gov identifier, NCT01578837;

Origin and evolution of Korean ginseng revealed by genome sequence

  • Cho, Woohyeon;Shim, Hyeonah;Yang, Tae-Jin
    • Journal of Ginseng Culture
    • /
    • v.3
    • /
    • pp.1-10
    • /
    • 2021
  • Panax ginseng (Ginseng or Korean ginseng) is one of the most important medicinal herbs in the world. We made a high-quality whole genome sequence of P. ginseng using 'Chunpoong' cultivar, which is the first cultivar registered in Korea Seed and Variety Service (KSVS) with relatively similar genotypes and superior phenotypes, representing approximately 3 Gbp and 60,000 genes. Genome sequence analyses of P. ginseng and related speciesrevealed the origin of Korean ginseng and the ecological adaptation of 18 Panax species around the world. Korean ginseng and American ginseng (P. quinquefolius) are tetraploid species having 24 chromosome pairs, while the other 16 species are diploid species with 12 chromosome pairs. Panax and Aralia are the closest genera belonging to the Araliaceae family that diverged approximately 8 million years ago (MYA). All Panax species evolved as shade plants adapting to cool climates and low light conditions under the canopy of deep forests from Southeast Asia such as Vietnam to Northeast Asia such as Russia approximately 6 MYA. However, through recurrent ice ages and global warming, most diploid Panax species disappeared due to the freezing winter, while tetraploid P. ginseng may have appeared by allotetraploidization, which contributed to the adaptation to cold temperaturesin Northeast Asian countries including the Korea peninsula approximately 2 MYA. American ginseng evolved by the adaptation of P. ginseng in Northeast America after the intercontinental migration 1 MYA. Meanwhile, most of diploid Panax species survived in high-altitude mountains over 1,600 meters in Southeast Asia because they could not endure the hot temperature and freezing cold. The genome sequence provides good basisto unveil the origin and evolution of ginseng and also supports practical gene chips which is useful for breeding and the ginseng industry.

PHYSIOLOGICAL RESPONSE OF PANAX GINSENG TO LIGHT

  • Park Hoon
    • Proceedings of the Ginseng society Conference
    • /
    • 1980.09a
    • /
    • pp.151-170
    • /
    • 1980
  • Physiological response of Panax ginseng var. atropurpureacaulo (purple stem variety, Pg) to light was reviewed through old literatures and recent experiments. Canopy structure, growth, pigment, leaf anatomy, disease occurence, transpiration, photosynthesis (PS), leaf saponin, photoperiodism and nutrient uptake were concerned. P. ginseng var. xanthocarpus (yellow berry variety, Px) and Panax quinquefolius(Pq) were compared with Pg if possible. Compensation point(Cp) increased with increase of light and ranged from 110 to 150 at $20^{\circ}C$ but from 140 to 220 at $30^{\circ}C$ with 4 to 15 Klux indicating occurence of light and temperature-dependent high photorespiration. Characteristics of Korea ginseng to hate high temperature was well accordance with an observation 2000 years ago. Korea ginseng showed lower Cp and appeared to be more tolerant to high light intensity and temperature than American sheng although the latter showed greater PS, stomata frequency and conductance, chlorophyll and carotenoids. Px showed lower PS than Pg probably due to higher Cp. Total leaf saponin was higher in leaves grown under high light. Ratio or diol saponin and triol saponin(PT/PD) decreased with increase of light intensity during growing mainly due to decrease of ginsenoside $Rg_1$ but increase of ginsenoside Rd. Leaves of Pg and Px had $Rg_1$ but no $Rb_3$ which was only found as much as $20\%$ of total in Pq leaves, and decreased with increase of light intensity. Re increased in Pg and Px but decreased in Pq with increase of light. PT/PD in leaf ranged 1.0-1.5 in Pg and Px but around 0.5 in Pq. Korea ginseng has Yang characteristics(tolerant to high light and temperature), cultured under Eum(shade) condition and long been used for Yang efficacy (to build up energy) while Pq was quite contrary. Traditional low light $intensity(3-8\%)$ for Korea ginseng culture appeared to be strongly related to historical unique quality. Effect of light quality and photoperiodism was not well known. Experiences are long but scientific knowledge is short for production and quality assessment of ginseng. Recent scientific knowledge of ginseng should learn wisdom from old experiences.

  • PDF

Identification of N,N',N"-triacetylfusarinine C as a key metabolite for root rot disease virulence in American ginseng

  • Walsh, Jacob P.;DesRochers, Natasha;Renaud, Justin B.;Seifert, Keith A.;Yeung, Ken K.C.;Sumarah, Mark W.
    • Journal of Ginseng Research
    • /
    • v.45 no.1
    • /
    • pp.156-162
    • /
    • 2021
  • Background: It is estimated that 20-30% of ginseng crops in Canada are lost to root rot each harvest. This disease is commonly caused by fungal infection with Ilyonectria, previously known as Cylindrocarpon. Previous reports have linked the virulence of fungal disease to the production of siderophores, a class of small-molecule iron chelators. However, these siderophores have not been identified in Ilyonectria. Methods: High-resolution LC-MS/MS was used to screen Ilyonectria and Cylindrocarpon strain extracts for secondary metabolite production. These strains were also tested for their ability to cause root rot in American ginseng and categorized as virulent or avirulent. The differences in detected metabolites between the virulent and avirulent strains were compared with a focus on siderophores. Results: For the first time, a siderophore N,N',N"-triacetylfusarinine C (TAFC) has been identified in Ilyonectria, and it appears to be linked to disease virulence. Siderophore production was suppressed as the concentration of iron increased, which is in agreement with previous reports. Conclusion: The identification of the siderophore produced by Ilyonectria gives us further insight into the root rot disease that heavily affects ginseng crop yields. This research identifies a molecular pathway previously unknown for ginseng root rot and could lead to new disease treatment options.