• Title/Summary/Keyword: P-wave tomogram

Search Result 6, Processing Time 0.025 seconds

A Study for the Construction of the P and S Velocity Tomogram from the Crosswell Seismic Data Generated by an Impulsive Source (임펄시브 진원에 의한 공대공 탄성파기록으로부터 P파, S파 속도 영상도출에 관한 연구)

  • Lee, Doo-Sung
    • Geophysics and Geophysical Exploration
    • /
    • v.6 no.3
    • /
    • pp.138-142
    • /
    • 2003
  • Crosswell seismic data were acquired in three sections crossing a tunnel of 3 different types; one was empty, another was ailed by sand, and the other was filled by rock debris. Both the P- and S-wave first arrivals were picked and the traveltime tomography was conducted to generate the P- and S- wave velocity tomograms on the all three sections. Among six tomograms, only one tomogram shows a low velocity zone that can be interpreted as a tunnel image. The tomogram is the P wave velocity image of a section that crosses an empty tunnel. The result of numerical analysis for the spatial resolution of the traveltime tomography was consistent to this finding.

Comparison of Shear-wave Velocity Sections from Inverting SH-wave Traveltimes of First Arrivals and Surface Wave Dispersion Curves (SH파 초동주시 역산과 표면파 분산곡선 역산으로부터 구한 횡파속도 단면 비교)

  • Lee, Chang-Min;Kim, Ki-Young
    • Journal of the Korean Geophysical Society
    • /
    • v.8 no.2
    • /
    • pp.67-74
    • /
    • 2005
  • Two-dimensional S-wave velocity sections from SH-wave refraction tomography and surface wave dispersions were obtained by inverting traveltimes of first arrivals and surface wave dispersions, respectively. For the purpose of comparison, a P-wave velocity tomogram was also obtained from a P-wave refraction profiling. P and Rayleigh waves generated by vertical blows on a plate with a sledgehammer were received by 100- and 4.5-Hz geophones, respectively. SH-waves generated by horizontal blows on both sides of a 50 kg timber were received by 8 Hz horizontal geophones. The shear-wave signals were enhanced subtracting data of left-side blows from ones of the right-side blows. Shear-wave velocities from tomography inversion of first-arrival times were compared with ones from inverting dispersion curves of Rayleigh waves. Although the two velocity sections look similar to each other in general, the one from the surface waves tends to have lower velocities. First arrival picking of SH waves is troublesome since P and PS-converted waves arrive earlier than SH waves. Application of the surface wave method, on the other hand, is limited where lateral variation of subsurface tructures is not mild.

  • PDF

Near-surface P- and S-wave Velocity Structures in the Vicinity of the Cheongcheon Dam (청천댐 주변의 천부 P파 및 S파 속도구조)

  • Park, Yeong Hwan;Kim, Ki Young
    • Geophysics and Geophysical Exploration
    • /
    • v.16 no.3
    • /
    • pp.109-118
    • /
    • 2013
  • On and near the 23-m high earthen Cheongcheon dam in Boryeong City, Korea, short seismic refraction and surface-wave profiles were conducted using a 5-kg sledgehammer. From vertical and horizontal components of the seismic waves, near-surface P-wave velocities (${\nu}_p$) and S-wave velocities (${\nu}_s$) were derived by inverting first-arrival refraction times and dispersion curves of Rayleigh waves. Average ${\nu}_p$ and ${\nu}_s$ for the Jurassic sedimentary basement were determined to be 1650 and 950 m/s at a depth of 30 m directly beneath the dam and 1650 m/s and 940 m/s at a depth of 10 m at the toe of the dam, respectively. The dynamic Poisson's ratio for these strata were therefore in the range of 0.24 to 0.25, which is consistent with ratios for consolidated sedimentary strata. Near a 45-m borehole 152 m downstream from the dam crest, an SH tomogram indicates a refraction boundary with an average ${\nu}_s$ of 870 m/s at depths of 10 ~ 12 m. At this site, the overburden comprises the upper layer with relatively constant ${\nu}_p$ and ${\nu}_s$ around 500 and 200 m/s, respectively, and the lower layer in which both ${\nu}_p$ and ${\nu}_s$ increase with depth almost linearly. The dynamic Poisson's ratios for the overburden were in the range of 0.30 to 0.43.

Monitoring and detecting $CO_2$ injected into water-saturated sandstone with joint seismic and resistivity measurements (탄성파 및 비저항 동시측정에 의한 수포화 암석시료에 주입된 $CO_2$ 모니터링 및 탐지)

  • Kim, Jong-Wook;Matsuoka, Toshifumi;Xue, Ziqiu
    • Geophysics and Geophysical Exploration
    • /
    • v.14 no.1
    • /
    • pp.58-68
    • /
    • 2011
  • As part of basic studies of monitoring carbon dioxide ($CO_2$) storage using electrical and seismic surveys, laboratory experiments have been conducted to measure resistivity and P-wave velocity changes due to the injection of $CO_2$ into water-saturated sandstone. The rock sample used is a cylinder of Berea sandstone. $CO_2$ was injected under supercritical conditions (10 MPa, $40^{\circ}C$). The experimental results show that resistivity increases monotonously throughout the injection period, while P-wave velocity and amplitude decrease drastically due to the supercritical $CO_2$ injection. A reconstructed P-wave velocity tomogram clearly images $CO_2$ migration in the sandstone sample. Both resistivity and seismic velocity are useful for monitoring $CO_2$ behaviour. P-wave velocity, however, is less sensitive than resistivity when the $CO_2$ saturation is greater than ~20%. The result indicates that the saturation estimation from resistivity can effectively complement the difficulty of $CO_2$ saturation estimations from seismic velocity variations. By combining resistivity and seismic velocity we were able to estimate $CO_2$ saturation distribution and the injected $CO_2$ behaviour in our sample.

A Case Study on Seismic Refraction Tomography Survey for Subsurface Structure Interpretation (지하구조 해석을 위한 탄성파 굴절법 토모그라피 탐사 사례연구)

  • 유영준;유인걸;송무영
    • The Journal of Engineering Geology
    • /
    • v.11 no.2
    • /
    • pp.163-174
    • /
    • 2001
  • For quantitative evaluation of geotechnical engineering properties such as rippability and diggability, clear interpretation on the subsUJiace velocity structures should be preceded by figuring out top soil, weathered and soft rock layers, shape of basement, fracture zones, geologic boundary and etC. from the seismic refraction data. It is very important to set up suitable field parameters, which are the configuration of profile and its length, spacings of geophones and sources and topographic conditions, for increasing field data Quality. Geophone spacing of 3 to 5m is reconunended in the land slope area of house land development site. In refraction tomography technique, the number of source points should be more than a Cluarter of available channel number of instrument and the subsurface structure interpretation can be decreased the artifact of inversion by topographic effect. Compared with core logging data, it is shown that the velocity range of the soil is less than 700m/s, weathered rock 700~1,200m/s, soft rock 1,200~1,800m/s on the velocity tomogram section. And the upper limit of P-wave velocity for rippability is estimated 1,200 to 1,800m/s in land slope area of gneiss.

  • PDF

Time-lapse crosswell seismic tomography for monitoring injected $CO_2$ in an onshore aquifer, Nagaoka, Japan (일본 Nagaoka의 육상 대수층에 주입된 $CO_2$의 관찰을 위한 시간차 시추공간 탄성파 토모그래피)

  • Saito, Hideki;Nobuoka, Dai;Azuma, Hiroyuki;Xue, Ziqiu;Tanase, Daiji
    • Geophysics and Geophysical Exploration
    • /
    • v.9 no.1
    • /
    • pp.30-36
    • /
    • 2006
  • Japan's first pilot-scale $CO_2$ sequestration experiment has been conducted in Nagaoka, where 10400 t of $CO_2$ have been injected in an onshore aquifer at a depth of about 1100 m. Among various measurements conducted at the site for monitoring the injected $CO_2$, we conducted time-lapse crosswell seismic tomography between two observation wells to determine the distribution of $CO_2$ in the aquifer by the change of P-wave velocities. This paper reports the results of the crosswell seismic tomography conducted at the site. The crosswell seismic tomography measurements were carried out three times; once before the injection as a baseline survey, and twice during the injection as monitoring surveys. The velocity tomograms resulting from the monitoring surveys were compared to the baseline survey tomogram, and velocity difference tomograms were generated. The velocity difference tomograms showed that velocity had decreased in a part of the aquifer around the injection well, where the injected $CO_2$ was supposed to be distributed. We also found that the area in which velocity had decreased was expanding in the formation up-dip direction, as increasing amounts of $CO_2$ were injected. The maximum velocity reductions observed were 3.0% after 3200 t of $CO_2$ had been injected, and 3.5% after injection of 6200 t of $CO_2$. Although seismic tomography could map the area of velocity decrease due to $CO_2$ injection, we observed some contradictions with the results of time-lapse sonic logging, and with the geological condition of the cap rock. To investigate these contradictions, we conducted numerical experiments simulating the test site. As a result, we found that part of the velocity distribution displayed in the tomograms was affected by artefacts or ghosts caused by the source-receiver geometry for the crosswell tomography in this particular site. The maximum velocity decrease obtained by tomography (3.5%) was much smaller than that observed by sonic logging (more than 20%). The numerical experiment results showed that only 5.5% velocity reduction might be observed, although the model was given a 20% velocity reduction zone. Judging from this result, the actual velocity reduction can be more than 3.5%, the value we obtained from the field data reconstruction. Further studies are needed to obtain more accurate velocity values that are comparable to those obtained by sonic logging.