DOI QR코드

DOI QR Code

Near-surface P- and S-wave Velocity Structures in the Vicinity of the Cheongcheon Dam

청천댐 주변의 천부 P파 및 S파 속도구조

  • Received : 2013.01.14
  • Accepted : 2013.06.12
  • Published : 2013.08.31

Abstract

On and near the 23-m high earthen Cheongcheon dam in Boryeong City, Korea, short seismic refraction and surface-wave profiles were conducted using a 5-kg sledgehammer. From vertical and horizontal components of the seismic waves, near-surface P-wave velocities (${\nu}_p$) and S-wave velocities (${\nu}_s$) were derived by inverting first-arrival refraction times and dispersion curves of Rayleigh waves. Average ${\nu}_p$ and ${\nu}_s$ for the Jurassic sedimentary basement were determined to be 1650 and 950 m/s at a depth of 30 m directly beneath the dam and 1650 m/s and 940 m/s at a depth of 10 m at the toe of the dam, respectively. The dynamic Poisson's ratio for these strata were therefore in the range of 0.24 to 0.25, which is consistent with ratios for consolidated sedimentary strata. Near a 45-m borehole 152 m downstream from the dam crest, an SH tomogram indicates a refraction boundary with an average ${\nu}_s$ of 870 m/s at depths of 10 ~ 12 m. At this site, the overburden comprises the upper layer with relatively constant ${\nu}_p$ and ${\nu}_s$ around 500 and 200 m/s, respectively, and the lower layer in which both ${\nu}_p$ and ${\nu}_s$ increase with depth almost linearly. The dynamic Poisson's ratios for the overburden were in the range of 0.30 to 0.43.

높이 23 m인 보령시 청천댐 상부와 인근에서 5 kg 해머를 이용하여 소규모 굴절법 및 표면파 탐사를 실시하였다. 인공 지진파의 수직 및 수평성분을 초동주시 토모그래피 및 레일리파 분산곡선 역산을 통하여 천부 P파속도(${\nu}_p$)와 S파속도(${\nu}_s$) 구조를 파악하였다. 중생대 퇴적암질 기반암의 평균 ${\nu}_p$${\nu}_s$는 댐마루 30 m 깊이에서 각각 1650 m/s와 950 m/s, 하류쪽 댐체 끝 지점 10 m 깊이에서 각각 1650 m/s와 940 m/s로 분석된다. 이 층들의 동포아송비는 0.24 ~ 0.25의 범위로, 고화된 퇴적층의 값과 일치한다. 댐체로부터 152 m 하류지점의 깊이 45 m 시추공 부근에서의 SH파 굴절법 토모그램은 10 ~ 12 m 깊이에 평균 vs가 870 m/s인 임계굴절면이 존재함을 보여준다. 이 지역에서는 덮개층의 ${\nu}_p$${\nu}_s$가 각각 500 m/s와 200 m/s인 상부층과 깊이에 따라 속도가 거의 선형으로 증가하는 하부층으로 구성되어 있다.

Keywords

References

  1. Cho, I., and Yeom, J.-Y., 2007, Crossline resistivity tomography for the delineation of anomalous seepage pathways in an embankment dam: Geophysics, 72, G31-G38, doi:10.1190/ 1.2435200.
  2. Chung, S. H., Kim, J. H., Yang, J. M., Han, K. E., and Kim, Y. W., 1992, Delineation of water seepage in earth-fill embankments by electrical resistivity method, The Journal of Engineering Geology, 2, 47-57.
  3. Dueker, K., Humphreys, E., and Biasi, G., 1993, Teleseismic imaging of the western United States upper mantle structure using the simultaneous iterative reconstruction technique, in Seismic tomography: theory and practice, Chapman & Hall, London.
  4. Ha, I., 2011, Evaluation for fundamental periods of domestic rockfill dams with micro-earthquake records, Journal of the Korean Geoenvironmetal Society, 12, 53-66.
  5. Hampson, D., and Russel, B., 1984, First-break interpretation using generalized linear inversion: I. Can. Soc. Expl. Geophysics., 20, 40-54.
  6. Haskell, N. A., 1953, The dispersion of surface waves in multilayered media, Bulletin of the Seismological Society of America, 43, 17-34.
  7. Kim, K. Y., Kim, D.-H., Shin, H. C., and Kim, Y.-J., 2002, Geological structures of the Ulsan fault in Yaksoo area of Ulsan using the method of refraction travel-time tomography, Journal of the Geological Society of Korea, 38, 509-518.
  8. Kim, K. Y., Jeon, K. M., Hong, M. H., and Park Y.-g., 2011,Detection of anomalous features in an earthen dam usinginversion of P-wave first-arrival times and surface-wavedispersion curves, Exploration Geophysics, 42, 42-49; Butsuri-Tansa, 64, 42-49; Jigu-Mulli-wa-Mulli-Tamsa, 14, 42-49. https://doi.org/10.1071/EG10047
  9. Kitsunezake, C., Goto, N., Kobayashi, Y., Ikawa, T., Horike, M., Saito, T., Kurota, T., Yamane, K., and Okuzumi, K., 1990, Estimation of P- and S-wave velocities in deep soil deposits for evaluating vibrations in earthquake, SINENSAIGAI-KAGAKU, 9-3, 1-17.
  10. Korea Rural Community and Agriculture Corporation, 2011, Detailed safety inspection report on Cheongcheon reservoir, Korea Agricultural and Rural Infractructure Corporation (current Korea Rural Community Corporation).
  11. Layotte, P. C., 1983, Marthor, an S-wave impulse source, SEG Technical Program Expanded Abstracts 1983: 418-421.
  12. Ludwig, W. J., Nafe, J. E., and Drake, C. L., 1970, Seismic refraction in the Sea, vol. 4, part 1, Wiley-interscience, 74.
  13. Marquardt, C. W., 1963, An algorithm for least square estimation of nonlinear parameters, Journal of the Society for Industrial and Applied Mathematics, 11, 431-441. https://doi.org/10.1137/0111030
  14. Miller, S. L. M., and Stewart, R. R., 1990, Effects of lithology, porosity and shaliness on P- and S-wave velocities from sonic logs, Canadian Journal of Exploration Geophysics, 26, 94-103.
  15. Ministry of Construction and Transportation, 2004, Seismic design code for utility-pipe conduit, 49p.
  16. Nations, J. F., 1974, Lithology and porosity from acoustic shear and compressional wave transit time relationships, Transactions of the Society of Professional Well Log Analysis Annual Logging Symposium, 15, 1-16.
  17. Ohmachi, T., and Kuwano, J., 1994, Dynamic Safety of Earth and Rockfill Dams, A.A. BALKEMA/ROTTERDAM, 32-49.
  18. Park, C. B., Miller, R. D., and Xia, J., 1999, Multichannel analysis of surface waves, Geophysics, 64, 800-808. https://doi.org/10.1190/1.1444590
  19. Park, S. G., Kim, J.-H., and Seo, G. W., 2005, Application of electrical resistivity monitoring technique to maintenance of embankments, Geophysics and Geophysical Exploration, 8, 177-183.
  20. Park, S.-G., Song, S.-H., Choi, J., Choi, B.-G., and Lee, B.-H., 2002, Applicability of geophysical prospecting for water leakage detection in water utilization facilities, Proc. the 4th KSEG Conference, 179-195.
  21. Radon, J., 1917, Uber die Bestimmung von Functionen Durcy ihre integralwerte langs gewisser Manningfaltigkeiten, Bu. Succhass. Akad. Leipzig.: Math. Phys. K., 69, 262.
  22. Rix, G. J., and Leipski, E. A., 1991, Accuracy and resolution of surface wave inversion, in S. K. Bhatia and G. W. Blaney, eds. Recent advances in instrumentation, data acquisition and testing in soil dynamics: American Society of Civil Engineering, pp. 17-32.
  23. Song, S.-H., Kwon, B.-D., Choi, J.-H., and Kim, 2001, K.-M., Application of hydrogeological and geophysical methods to leakage problem of dike, Journal of Korean Society For Geosystem Engineering, 38, 292-300.
  24. Song, S.-H., Lee, K.-S., Kim, J.-H., and Kwon, B.-D., 2000, Application of SP and pole-pole array electrical resistivity surveys to the seawater leakage problem of the embankment, Econ. Environ. Geol., 33, 417-424.
  25. Thomson, W. T., 1950, Transmission of elastic waves through a stratified solid, Journal of Applied Physics, 21, 89-93. https://doi.org/10.1063/1.1699629
  26. Yi, M.-J., Kim, J.-H., Song, Y.-h., and Chung, S.-H., 2000, Dam seepage investigation using two- and three-dimensional resistivity surveys, Proc. the 2nd KSEG Conference, 41-53.
  27. Yi, M. J., Kim, J. H., and Chung, S. H., 2003, Enhancing the resolving power of least-squares inversion with active constraint balancing, Geophysics, 68, 931-941. https://doi.org/10.1190/1.1581045

Cited by

  1. Microtremor response of the Cheongcheon dam in Korea vol.47, pp.2, 2016, https://doi.org/10.1071/EG15019