• Title/Summary/Keyword: P-channel Poly-Si TFT

Search Result 28, Processing Time 0.032 seconds

In-Situ Fluorine Passivation by Excimer Laser Annealing

  • Jung, Sang-Hoon;Kim, Cheon-Hong;Jeon, Jae-Hong;Yoo, Juhn-Suk;Han, Min-Koo
    • Journal of Information Display
    • /
    • v.1 no.1
    • /
    • pp.25-28
    • /
    • 2000
  • We propose a new in-situ fluorine passivation of poly-Si TFTs using excimer laser annealing to reduce the trap state density and improve reliability significantly. To investigate the effect of an in-situ fluorine passivation, we have fabricated fluorine-passivated p-channel poly-Si TFTs and examined their electrical characteristics and stability. A new in-situ fluorine passivation brought about an improvement in electrical characteristic. Such improvement is due to the formation of stronger Si-F bonds than Si-H bonds in poly-Si channel and $SiO_2$/Poly-Si interface.

  • PDF

An Improved Output Current Saturation of Poly-Si TFTs Employing Reverse Bias Depletion in the Channel (Kink 전류 억제를 위한 새로운 구조의 다결정 실리콘 박막 트랜지스터)

  • Lee, Hye-Jin;Nam, Woo-Jin;Han, Min-Koo
    • Proceedings of the KIEE Conference
    • /
    • 2005.11a
    • /
    • pp.84-86
    • /
    • 2005
  • 본 논문에서는 역 방향 전하공핍(reverse bias depletion)을 적용한 새로운 구조의 다결정 실리콘 박막 트랜지스터(poly-Si TFT)를 제안한다. 제안된 소자는 kink 전류 억제를 목적으로 counter-doped(p+) 영역이 채널 내로 확장되어 유효채널 폭을 감소시키는 구조이다. 감소된 채널 폭에 의하여 포화 영역의 채널 내 저항이 증가하고, 훌 전류를 통하여 kink 효과가 억제된다. 제작된 새로운 poly-Si TFT는 기존의 소자에 비해 효과적으로 kink 전류를 억제할 수 있음을 실험을 통해 검증하였다.

  • PDF

ZnO Nanowires and P3HT Polymer Composite TFT Device (ZnO 나노선과 P3HT 폴리머를 이용한 유/무기 복합체 TFT 소자)

  • Moon, Kyeong-Ju;Choi, Ji-Hyuk;Kar, Jyoti Prakash;Myoung, Jae-Min
    • Korean Journal of Materials Research
    • /
    • v.19 no.1
    • /
    • pp.33-36
    • /
    • 2009
  • Inorganic-organic composite thin-film-transistors (TFTs) of ZnO nanowire/Poly(3-hexylthiophene) (P3HT) were investigated by changing the nanowire densities inside the composites. Crystalline ZnO nanowires were synthesized via an aqueous solution method at a low temperature, and the nanowire densities inside the composites were controlled by changing the ultrasonifiaction time. The channel layers were prepared with composites by spin-coating at 2000 rpm, which was followed by annealing in a vacuum at $100^{\circ}C$ for 10 hours. Au/inorganic-organic composite layer/$SiO_2$ structures were fabricated and the mobility, $I_{on}/I_{off}$ ratio, and threshold voltage were then measured to analyze the electrical characteristics of the channel layer. Compared with a P3HT TFT, the electrical properties of TFT were found to be improved after increasing the nanowire density inside the composites. The mobility of the P3HT TFT was approximately $10^{-4}cm^2/V{\cdot}s$. However, the mobility of the ZnO nanowire/P3HT composite TFT was increased by two orders compared to that of the P3HT TFT. In terms of the $I_{on}/I_{off}$ ratio, the composite device showed a two-fold increase compared to that of the P3HT TFT.

Dopant Activation and Damage Recovery of Ion Shower Doped Poly-Si According to Various Annealing Techniques

  • Park, Jong-Hyun;Kim, Dong-Min;Ro, Jae-Sang;Choi, Kyu-Hwan;Lee, Ki-Yong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.149-152
    • /
    • 2003
  • Soruce/drain (or, LDD) formation technology is critical to device reliability especially in the case of short channel LTPS-TFT devices. Ion shower doping with a main ion source of $P_2H_x$ was conducted on ELA Poly-Si. We report the effects of annealing methods on dopant activation and damage recovery in ion-shower doped poly-Si.

  • PDF

Gate Insulator 두께 가변에 따른 TFT소자의 전기적 특성 비교분석

  • Kim, Gi-Yong;Jo, Jae-Hyeon;Lee, Jun-Sin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.39-39
    • /
    • 2009
  • We fabricated p-channel TFTs based on poly Silicon. The 35nm thickness silicon dioxide layer structure got higher $I_{on}/I_{off}$ ratio, field-effect Mobility and output current than 10nm thickness. And 35nm layer showed low leakage current and threshold voltage. So, 35nm thickness silicon dioxide layer TFTs are faster reaction speed and lower power consumption than 10nm thickness.

  • PDF

Dependence of Self-heating Effect on Width/Length Dimension in p-type Polycrystalline Silicon Thin Film Transistors

  • Lee, Seok-Woo;Kim, Young-Joo;Park, Soo-Jeong;Kang, Ho-Chul;Kim, Chang-Yeon;Kim, Chang-Dong;Chung, In-Jae
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.505-508
    • /
    • 2006
  • Self-heating induced device degradation and its width/length (W/L) dimension dependence were studied in p-type polycrystalline silicon (poly-Si) thin film transistors (TFTs). Negative channel conductance was observed under high power region of output curve, which was mainly caused by hole trapping into gate oxide and also by trap state generation by self-heating effect. Self-heating effect became aggravated as W/L ratio was increased, which was understood by the differences in heat dissipation capability. By reducing applied power density normalized to TFT area, self-heating induced degradation could be reduced.

  • PDF

Analysis of An Anomalous Hump Phenomenon in Low-temperature Poly-Si Thin Film Transistors (저온 다결정 실리콘 박막 트랜지스터의 비정상적인 Hump 현상 분석)

  • Kim, Yu-Mi;Jeong, Kwang-Seok;Yun, Ho-Jin;Yang, Seung-Dong;Lee, Sang-Youl;Lee, Hi-Deok;Lee, Ga-Won
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.11
    • /
    • pp.900-904
    • /
    • 2011
  • In this paper, we investigated an anomalous hump phenomenon under the positive bias stress in p-type LTPS TFTs. The devices with inferior electrical performance also show larger hump phenomenon. which can be explained by the sub-channel induced from trapped electrons under thinner gate oxide region. We can confirm that the devices with larger hump have larger interface trap density ($D_{it}$) and grain boundary trap density ($N_{trap}$) extracted by low-high frequency capacitance method and Levinson-Proano method, respectively. From the C-V with I-V transfer characteristics, the trapped electrons causing hump seem to be generated particularly from the S/D and gate overlapped region. Based on these analysis, the major cause of an anomalous hump phenomenon under the positive bias stress in p-type poly-Si TFTs is explained by the GIDL occurring in the S/D and gate overlapped region and the traps existing in the channel edge region where the gate oxide becomes thinner, which can be inferred by the fact that the magnitude of the hump is dependent on the average trap densities.

Positive Shift of Threshold Voltage in short channel (L=$1.5{\mu}m$) P-type poly-Si TFT under Off-State Bias Stress (P형 짧은 채널(L=1.5 um) 다결정 실리콘 박막 트랜지스터의 오프 상태 스트레스 하에서의 신뢰성 분석)

  • Lee, Jeong-Soo;Choi, Sung-Hwan;Park, Sang-Geun;Han, Min-Koo
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1225_1226
    • /
    • 2009
  • 유리 기판 상에 이중 게이트 절연막을 가지는 우수한 특성의 P형 엑시머 레이저 어닐링 (ELA) 다결정 실리콘 박막 트랜지스터를 제작하였다. 그리고 P형 짧은 채널 ELA 다결정 실리콘 박막 트랜지스터의 오프 상태 스트레스 하에서의 전기적 특성을 분석하였다. 스트레스하에서 긴 채널에서의 문턱 전압은 양의 방향으로 거의 이동하지 않는 (${\Delta}V_{TH}$ = 0.116V) 반면, 짧은 채널 박막 트랜지스터의 문턱 전압은 양의 방향으로 상당히 이동 (${\Delta}V_{TH}$ = 2.718V)하는 것을 확인할 수 있었다. 이런 짧은 채널 박막 트랜지스터에서 문턱 전압의 양의 이동은 다결정 실리콘 막과 게이트 산화막 사이의 계면에서의 전자 트랩핑 때문이다. 또한, 박막 트랜지스터의 누설 전류는 오프 상태 스트레스 하에서의 채널 영역의 홀 전하로 인하여 온 전류 수준을 감소시키지 않고 억제될 수 있었다. C-V 측정 결과는 계면의 전자 트랩핑이 드레인 접합 영역부근에서 발생한다는 것을 나타낸다.

  • PDF