• Title/Summary/Keyword: P-N junction

Search Result 423, Processing Time 0.027 seconds

Properties of p-n junction threshold voltage of Silicon diode by transport current in cryogenic temperature (인입 전류에 따른 실리콘(Silicon) 다이오드의 극저온 p-n 접합의 문턱 전압 특성)

  • Lee, An-Su;Lee, Seung-Je;Lee, Eung-Ro;Ko, Tea-Kuk
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.864-867
    • /
    • 2003
  • Since the development of semiconductors, various related research has been conducted. During research, silicon diodes have been commonly used because of their simplicity and low cost in the manufacturing process. This research deals with p-n junction threshold voltages from silicon diodes due to transport current at a cryogenic temperature. At a cryogenic temperature(77K) we could get minimum current which junction threshold voltage becomes constant. This is experimented on GPIB communication and it consist of programmable current source, multimeter which gauge the threshold voltage in a very low temperature caused by transport current from 5nA to 1mA and $LN_2$(77K) for coolant. This experiment is programmed all process using Measurement studio(Lab window) tool.

  • PDF

Study on the pn Junction Device Using the POCl3 Precursor (POCl3를 사용한 pn접합 소자에 관한 연구)

  • Oh, Teresa
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.5
    • /
    • pp.391-396
    • /
    • 2010
  • The pn junction for solar cell was prepared on p-type Si wafer by the furnace using the $POCl_3$ and oxygen mixed precursor to research the characteristic of interface at pn junction. The sheet resistance was decreased in accordance with the increasing the diffusion process time for n-type doping on p-type Si wafer. The electron affinity at the interface in the pn junction was decreased with increasing the amount of n-type doping and the sheet resistance also decreased. Consequently, the drift current due to the generation of EHP increased because of low potential barrier. The efficiency and fill factor were increased at the solar cell with increasing the diffusion process time.

The Formation of the Shallow Junction by RTD and Characteristic Analysis for $n^+$ -p Diode with Ti-silicide (고속 열 확산에 의한 얕은 접합 형성과 Ti-실리시이드화된 $n^+$ -p 다이오드 특성 분석)

  • 최동영;이성욱;주정규;강명구;윤석범;오환술
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.8
    • /
    • pp.80-90
    • /
    • 1994
  • The ultra shallow junction was formed by 2-step RTP. Phosphorus solid source(P$_{2}O_{5}$) was transfered on wafer surface during RTG(Rapid Thermal Glass Transfer) of which process condition was 80$0^{\circ}C$ and 60sec. The process temperature and time of the RTD(Rapid Thermal Diffusion) were 950~105$0^{\circ}C$ during 5~15sec respectively sheet resistances were measured as 175~320$\Omega$/m and junction depth and dopth and dopant surface concentration were measured as 0.075~0.18$\mu$m and 5${\times}10^{19}cm^{4}$ respectively. Ti-silicide was formed by 2-step RTA after 300$\AA$ Titanium was deposited. The 1st RTA (2nd RTA) was carried out at the temperature of $600^{\circ}C$(700~80$0^{\circ}C$) for 30 seconds (10~60 seconds) under N$_2$ ambient. Sheet resistances after 2nd RTA were measured as 46~63$\Omega$/D. Si/Ti component ratio was evaulated as 1.6~1.9 from Auger depth profile. Ti-Silicided n-p junction diode (pattern size : 400$\times$400$\mu$m) was fabricated under the RTD(the process was carried out at the temperature of 100$0^{\circ}C$ for 10seconds) and 2nd RTA(theprocess was carried out at the temperature of 750$^{\circ}C$ for 60 seconds). Leakage current was measured 1.8${\times}10^{7}A/mm^{2}$ at 5V reverse voltage. Whent the RTD process condition is at the temperature of 100$0^{\circ}C$ for 10seconds and the 2nd RTA process condition is at the temperature of 75$0^{\circ}C$ for 60 seconds leakage current was 29.15${\times}10^{9}A$(at 5V).

  • PDF

Analysis of Electrical Characteristics According to the Pillar Spacing of 4.5 kV Super Junction IGBT (4.5 kV급 Super Junction IGBT의 Pillar 간격에 따른 전기적 특성 분석)

  • Lee, Geon Hee;Ahn, Byoung Sup;Kang, Ey Goo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.3
    • /
    • pp.173-176
    • /
    • 2020
  • This study focuses on a pillar in which is implanted a P-type maneuver under a P base. This structure is called a super junction structure. By inserting the pillar, the electric field concentrated on the P base is shared by the pillar, so the columns can be dispersed while maintaining a high breakdown voltage. Ten pillars were generated during the multi epitaxial process. The interval between pillars is varied to optimize the electric field to be concentrated on the pillar at a threshold voltage of 6 V, a yield voltage of 4,500 V, and an on-state voltage drop of 3.8 V. The density of the filler gradually decreased when the interval was extended by implanting a filler with the same density. The results confirmed that the size of the depletion layer between the filler and the N-epitaxy layer was reduced, and the current flowing along the N-epitaxy layer was increased. As the interval between the fillers decreased, the cost of the epitaxial process also decreased. However, it is possible to confirm the trade-off relationship that deteriorated the electrical characteristics and efficiency.

I-V Characteristics of Epitaxial $CoSi_2$-contacted p+/n Junctions (Epitaxial $CoSi_2$접촉 p+/n 접합의 I-V 특성)

  • 구본철;김시중;김주연;배규식
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.11
    • /
    • pp.908-913
    • /
    • 2000
  • CoSi$_2$/p+/n diodes(bilayer diodes) were fabricated by using epitaxial CoSi$_2$grown from Co/Ti bilayer as a diffusion source. The I-V characteristics of p+/n diodes were measured and compared with those of diode made from Co monolayer (monolayer diode). Monolayer diodes showed typical p+n junction characteristics with the leakage current of as low as 10$^{-12}$ A and forward current 6-orders higher than the leakage current, when drive-in annealed at 90$0^{\circ}C$ for 20 sec.. On the other hand, bilayer diodes showed the Schottky-like behaviors with forward currents rather higher than those of monolyer diodes, but with too high leakage currents, when drive-in annealed at $700^{\circ}C$ or higher. However, when the annealing temperature was lowered to $700^{\circ}C$ and annealing time was increased to 60 sec., the leakage current was reduced to 10$^{-11}$ A and thus sho3wed typical diode characteristics. The high leakage currents for diodes annealed at $700^{\circ}C$ or higher was attributed to Shannon contacts formed due to unremoved Co-Ti-Si precipitates. But when annealed at 50$0^{\circ}C$, B ions diffused in the direction of the surface layer, and thus the leakage currents were reduced by removing Shannon contacts.

  • PDF

Fabrication and Characteristics of a Varactor Diode for UHF TV Tuner Operated within Low Tuning Voltage (저전압 UHF TV 튜너용 바렉터 다이오드의 제작 및 특성)

  • Kim, Hyun-Sik;Moon, Young-Soon;Son, Won-Ho;Choi, Sie-Young
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.3
    • /
    • pp.185-191
    • /
    • 2014
  • The width of depletion region in a varactor diode can be modulated by varying a reverse bias voltage. Thus, the preferred characteristics of depletion capacitance can obtained by the change in the width of depletion region so that it can select only the desirable frequencies. In this paper, the TV tuner varactor diode fabricated by hyper-abrupt profile control technique is presented. This diode can be operated within 3.3 V of driving voltage with capability of UHF band tuning. To form the hyperabrupt profile, firstly, p+ high concentration shallow junction with $0.2{\mu}m$ of junction depth and $1E+20ions/cm^3$ of surface concentration was formed using $BF_2$ implantation source. Simulation results optimized important factors such as epitaxial thickness and dose quality, diffusion time of n+ layer. To form steep hyper-abrupt profile, Formed n+ profile implanted the $PH_3$ source at Si(100) n-type epitaxial layer that has resistivity of $1.4{\Omega}cm$ and thickness of $2.4{\mu}m$ using p+ high concentration Shallow junction. Aluminum containing to 1% of Si was used as a electrode metal. Area of electrode was $30,200{\mu}m^2$. The C-V and Q-V electric characteristics were investigated by using impedance Analyzer (HP4291B). By controlling of concentration profile by n+ dosage at p+ high concentration shallow junction, the device with maximum $L_F$ at -1.5 V and 21.5~3.47 pF at 0.3~3.3 V was fabricated. We got the appropriate device in driving voltage 3.3 V having hyper-abrupt junction that profile order (m factor) is about -3/2. The deviation of capacitance by hyper-abrupt junction with C0.3 V of initial capacitance is due to the deviation of thermal process, ion implantation and diffusion. The deviation of initial capacitance at 0.3 V can be reduced by control of thermal process tolerance using RTP on wafer.

A study on the design of boron diffusion simulator applicable for shallow $p^+-n$ junction formation (박막 $p^+-n$ 접합 형성을 위한 보론 확산 시뮬레이터의 제작에 관한 연구)

  • Kim, Jae-Young;Kim, Bo-Ra;Hong, Shin-Nam
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.04b
    • /
    • pp.30-33
    • /
    • 2004
  • Shallow p+-n junctions were formed by low-energy ion implantation and dual-step annealing processes The dopant implantation was performed into the crystalline substrates using $BF_2$ ions. The annealing was performed with a rapid thermal processor and a furnace. FA+RTA annealing sequence exhibited better junction characteristics than RTA+FA thermal cycle from the viewpoint of junction depth. A new simulator is designed to model boron diffusion in silicon, which is especially useful for analyzing the annealing process subsequent to ion implantation. The model which is used in this simulator takes into account nonequilibrium diffusion, reactions of point defects, and defect-dopant pairs considering their charge states, and the dopant inactivation by introducing a boron clustering reaction. Using a resonable parameter values, the simulator covers not only the equilibrium diffusion conditions but also the nonequilibrium post-implantation diffusion. Using initial conditions and boundary conditions, coupled diffusion equation is solved successfully. The simulator reproduced experimental data successfully.

  • PDF

Design of In Plane P-N Junction Thin-Film Thermoelectric Device (In Plane 방식의 P-N Junction 박막열전소자 제작)

  • Kwon, Sung-Do;Kim, Eun-Jin;Lee, Yun-Ju;Yoon, Seok-Jin;Ju, Byeong-Kwon;Kim, Jin-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.178-178
    • /
    • 2008
  • 초소형 박막의 열전 발전모듈은 작은 부피와 한번 설치시 교체없이 지속적인 전원공급으로 소형의 센서 노드에 전원으로 각광 받고 있다. 이에 본 논문에서는 In Plane방식의 PIN Junction의 박막형 열전소자를 제작하여 보았다. 열전 박막인 P-type의 $BiSbTe_3$와 N-type의 $Bi_2Te_3$은 (001)GaAs 기판에 MOCVD(Metal Organic Chemical Vapour Deposition)방식으로 성장하였으며 전극으로는 E-Beam Evaporator를 이용하여 금(Au), 알루미늄(Al)을 사용하였다. 열전박막의 두께는 MOCVD의 성장시간과 온도 MO-x 가스의 압력으로 조절하여 주었다. 제작결과 1Pairs 당 약 $63{\mu}V$/K을 나타내었다.

  • PDF

Efficiency Improvement of $N^+NPP^+$ Si Solar Cell with High Low Junction Emitter Structure (고저 접합 에미터 구조를 갖는 $N^+NPP^+$ Si 태양전지의 효율 개선)

  • 장지근;김봉렬
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.21 no.1
    • /
    • pp.62-70
    • /
    • 1984
  • N+NPP+ HLEBSF (high low emitter back surface field) solar cells which have N+N high low junction in the emitter as well as N+PP+ BSF cells were designed and fabricated by using <111> oriented P type Si wafers with the resistivity of 10$\Omega$/$\textrm{cm}^2$ and the thickness of 13-15 mil. Physical parameters (impurity concentration, thickness) at each region of N+PP+ and N+NPP+ cell were made equally through same masks and simultaneous process except N region of HLEBSF cell to investigate the high low emitter junction effect for efficiency improvement. Under the light intensity of 100 mW/$\textrm{cm}^2$, total area (active area) conversion efficiency were typically 10.94% (12.16%) for N+PP+ BSF cells and 12.07% (13.41%) for N+N PP+ cells. Efficiency improvement of N+NPP+ cell which has high low emitter Junction structure is resulted from the suppression of emitter recombination current and the increasement of open circuit voltage (Voc) and short circuit current (Ish) by removing heavy doping effects occurring in N+ emitter region.

  • PDF

Simulation of optimal ion implantation for symmetric threshold voltage determination of 1 ${\mu}m$ CMOS device (1 ${\mu}m$ CMOS 소자의 대칭적인 문턱전압 결정을 위한 최적 이온주입 시뮬레이션)

  • Seo, Yong-Jin;Choi, Hyun-Sik;Lee, Cheol-In;Kim, Tae-Hyung;Kim, Chang-Il;Chang, Eui-Goo
    • Proceedings of the KIEE Conference
    • /
    • 1991.11a
    • /
    • pp.286-289
    • /
    • 1991
  • We simulated ion implantation and annealing condition of 1 ${\mu}m$ CMOS device using process simulator, SUPREM-II. In this simulation, optimal condition of ion implantation for symmetric threshold voltage determination of PMOS and NMOS region, junction depth and sheet resistance of source/drain region, impurity profile of each region are investigated. Ion implantation dose for 3 ${\mu}m$ N-well junction depth and symmetric threshold voltage of $|0.6|{\pm}0.1$ V were $1.9E12Cm^{-2}$(for phosphorus), $1.7E122Cm^{-2}$(for boron) respectively. Also annealing condition for dopant activation are examined about $900^{\circ}C$, 30 minutes. After final process step, N-well junction, P+ S/D junction and N+ S/D junction depth are calculated 3.16 ${\mu}m$, 0.45 ${\mu}m$ and 0.25 ${\mu}m$ respectively.

  • PDF