DOI QR코드

DOI QR Code

Analysis of Electrical Characteristics According to the Pillar Spacing of 4.5 kV Super Junction IGBT

4.5 kV급 Super Junction IGBT의 Pillar 간격에 따른 전기적 특성 분석

  • Lee, Geon Hee (Department of Energy IT Engineering, Far East University) ;
  • Ahn, Byoung Sup (Department of Energy IT Engineering, Far East University) ;
  • Kang, Ey Goo (Department of Energy IT Engineering, Far East University)
  • 이건희 (극동대학교 에너지IT공학과) ;
  • 안병섭 (극동대학교 에너지IT공학과) ;
  • 강이구 (극동대학교 에너지IT공학과)
  • Received : 2020.02.12
  • Accepted : 2020.03.10
  • Published : 2020.05.01

Abstract

This study focuses on a pillar in which is implanted a P-type maneuver under a P base. This structure is called a super junction structure. By inserting the pillar, the electric field concentrated on the P base is shared by the pillar, so the columns can be dispersed while maintaining a high breakdown voltage. Ten pillars were generated during the multi epitaxial process. The interval between pillars is varied to optimize the electric field to be concentrated on the pillar at a threshold voltage of 6 V, a yield voltage of 4,500 V, and an on-state voltage drop of 3.8 V. The density of the filler gradually decreased when the interval was extended by implanting a filler with the same density. The results confirmed that the size of the depletion layer between the filler and the N-epitaxy layer was reduced, and the current flowing along the N-epitaxy layer was increased. As the interval between the fillers decreased, the cost of the epitaxial process also decreased. However, it is possible to confirm the trade-off relationship that deteriorated the electrical characteristics and efficiency.

Keywords

References

  1. B. S. A nn, H. S. C hung, E. S. J ung, S. J. K im, and E. G, Kang, J. Korean Inst. Electr. Electron. Mater. Eng., 25, 187 (2012). [DOI: https://doi.org/10.4313/JKEM.2012.25.3.187]
  2. M. C. Shin, H. S. Chung, B. S. Ahn, H. F. Cui, S. Y. Kim, and E. G. Kang, J. Nanosci. Nanotechnol., 19, 1670 (2019). [DOI: https://doi.org/10.1166/jnn.2019.16207]
  3. E. G. Kang, J. Korean Inst. Electr. Electron. Mater. Eng., 30, 210 (2017). [DOI: https://doi.org/10.4313/JKEM.2017.30.4.210]
  4. H. S. Chung and E. G. Kang, J. Korean Inst. Electr. Electron. Mater. Eng., 28, 496 (2015). [DOI: https://doi.org/10.4313/JKEM.2015.28.8.496]
  5. J. M. Geum, E. S. Jung, E. G. Kang, and M. Y. Sung, J. Korean Inst. Electr. Electron. Mater. Eng., 25, 253 (2012). [DOI: https://doi.org/10.4313/JKEM.2012.25.4.253]
  6. K. Sano and S. Kurihara, Phys. C, 352, 223 (2001). [DOI: https://doi.org/10.1016/S0921-4534(00)01730-5]
  7. E. G. Kang, J. Korean Inst. Electr. Electron. Mater. Eng., 27, 497 (2014). [DOI: https://doi.org/10.4313/JKEM.2014.27.8.497]
  8. H. W. Kim, K. S. Seo, W. Bahng, K. H. Kim, and N, K. Kim, J. Korean Inst. Electr. Electron. Mater. Eng., 19, 813 (2006). [DOI: https://doi.org/10.4313/JKEM.2006.19.9.813]
  9. Y. S. Jeong and S. M. Koo, J. Korean Inst. Electr. Electron. Mater. Eng., 30, 345 (2017). [DOI: https://doi.org/10.4313/JKEM.2017.30.6.345]
  10. Y. Chen, Y. C. Liang, and G. S. Samudra, Jpn. J. Appl. Phys., 44, 847 (2005). [DOI: https://doi.org/10.1143/JJAP.44.847]
  11. J. H. Kim and K. S. Kim, J. Inst. Korean Electr. Electron. Eng., 23, 756 (2019). [DOI: https://doi.org/10.7471/ikeee.2019.23.3.756]