• Title/Summary/Keyword: Ozone oxidation

Search Result 306, Processing Time 0.029 seconds

Characterization of NOM Behavior and DBPs Formation in Water Treatment Processes (정수처리공정에서 NOM 거동과 소독부산물 발생특성)

  • Kim, Sang Eun;Gu, Yeun Hee;Yu, Myong Jin;Chang, Hyun Seong;Lee, Su Won;Han, Sun Hee
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.4
    • /
    • pp.395-407
    • /
    • 2007
  • Disinfection by-products(DBPs) are formed through the reaction between chlorine and natural organic matter(NOM) in water treatment. For reducing the formation of chlorinated DBPs in the drinking water treatment, there is a need to evaluate the behavior of NOM fractions and the occurrence of DBPs for each fraction. Among the six fractions of NOM, the removal of HPOA and HPIN got accomplished through coagulation and sedimentation processes. Advanced water treatment processes were found to be most significant to remove the HPOA and HPON. It was found that HPOA made the most THMFP level than any other fractions and HPIA and HPOA formed higher HAAFP. The fraction of NOM with MW less than 1k Da was 32.5~54.3% in intake raw water. Mostly the organic matter with MW more than 1k Da was removed through coagulation and sedimentation in the drinking water treatment processes. In case of advanced water treatment processes, the organic matter with MW 1k~100k Da decreased by means of ozone oxidation for high molecular weight substances. As the result low molecular organic matter increased. In the BAC and GAC processes, the organic matter with MW less than 100k Da decreased.

A Study on removal of Geosmin by Ozonation and Photocatalysis and Generation of by-products (오존과 광촉매를 이용한 Geosmin 제거 및 부산물 생성에 관한 연구)

  • Kim, Young-Ung;Son, Hee-Jong;Yu, Myung-Ho;Kim, Seong-Yun;Kim, Chul
    • Journal of Korean Society on Water Environment
    • /
    • v.16 no.4
    • /
    • pp.445-457
    • /
    • 2000
  • This study was carried out comparing with ozone oxidation and photocatalytic degradation for removal of geosmin. In the change of pH, Ozonation, UV-Germicidal lamp and Halogen lamp irradiation and Halogen $lamp/TiO_2$ Powder was very slowly changing, but UV-Germicidal $lamp/TiO_2$ Powder was rapidly changed from 7.0 to 7.7 until 300min of irradiation time, and varied a little after. Geosmin degradation ratio was as following, UV-Germicidal $lamp/TiO_2$ $Powder(200mg/L){\geq}O_3$ > UV-Germicidal $lamp/TiO_2$ $Pw(100mg/L)$ > UV-Germicidal lamp > Halogen lamp. The result of investigation of generated by-products were 3-Heptanone, two sort of aldehydes and three sort of alcohols by ozonation. But It was not generated by photocatalytic degradation.

  • PDF

Continuous Surface Treatment and Dyeability of PTT Film via $UV/O_3$ Irradiation (UV/Ozone 조사에 의한 PTT 필름의 연속식 표면처리와 염색성)

  • Jang Jinho;Park Dae Sun
    • Textile Coloration and Finishing
    • /
    • v.17 no.1
    • /
    • pp.7-13
    • /
    • 2005
  • Continuous and intense UV irradiation on PTT film using two types of UV bulbs at different irradiation power level was carried out to modify surface characteristics of the film including zeta potential, wettability, surface energy, and dyeability. ESCA analysis of the irradiated film showed higher O/C ratio than the untreated film indicating photooxidation of outer surface layer. ATR analysis showed that the ester bonds were broken and some new groups were produced such as carboxylic acid, phenolic hydroxy, and other esters, implying that ester bonds of PTT was responsible for the observed photooxidation effect. The surface of the treated PTT film became more hydrophilic and wettable to water, coupled with increased surface energy. Polar component of the surface energy increased and nonpolar component decreased with increasing irradiation energy. The treatment also decreased zeta potential of the modified surface and nanoscale roughness increased with increasing irradiation. The dyeability of the treated films to catonic dyes was significantly improved by electrostatic and polar interaction between dye molecules and the anionic film surface. The UV irradiation seems to be a viable polymer surface modification technology, which has advantages such as no vacuum requirement and continuous process unlike plasma treatment.

Photo-oxidation and Dyeability of Poly Ketone by UV/O3 Irradiation (자외선/오존 조사에 의한 Poly Ketone의 광산화와 염색성)

  • Kim, Min-Su;Jang, Yong-Joon;Jang, Jinho
    • Textile Coloration and Finishing
    • /
    • v.25 no.1
    • /
    • pp.25-29
    • /
    • 2013
  • Poly ketone (PK) was photo-oxidized by UV/ozone irradiation and the effect of UV energy on the surface properties of the UV-irradiated PK film was investigated by the measurement of reflectance, surface roughness, contact angles, ESCA, and ATR. Reflectance, particularly at the wavelength of 380nm, decreased with increasing UV energy. And the irradiation produced nano-scale roughness on the surface uniformly. The maximum surface roughness increased from 25.3nm for the unirradiated sample to 104.9nm at the irradiation of $42.4J/cm^2$. The improvement in hydrophilicity was caused by the introduction of polar groups such as C-O and C=O bonds resulting in higher $O_{1s}/C_{1s}$. The surface energy of PK film increased from $43.3mJ/m^2$ for the unirradiated sample to $71.9mJ/m^2$ at the irradiation of $31.8J/cm^2$. The zeta potential of the UV-irradiated PK decreased with increased UV energy and the dyeability to cationic dyes increased accordingly, resulting from the photochemically introduced anionic and dipolar dyeing sites on the PK films surfaces.

Evaluation of brine reuse on salting of chinese cabbage using electrochemical process (전기화학적 처리에 의한 배추 절임염수 재이용 가능성 평가)

  • Jung, Heesuk;Lee, Eunsil;Han, Seongkuk;Han, Eungsoo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.28 no.5
    • /
    • pp.541-548
    • /
    • 2014
  • The pickling brine generated from the salting process of kimchi production is difficult to treat biologically due to very high content of salt. When pickling brine is treated and discharged, it cannot satisfy the criteria for effluent water quality in clean areas, while resources such as the salt to be recycled and the industrial water are wasted. However, sterilization by ozone, UV and photocatalyst is expensive installation costs and operating costs when considering the small kimchi manufacturers. Therefore there is a need to develop economical process. The study was conducted on the sterilization efficiency of the pickling brine using electrochemical processing. The electrochemical treatment of organic matters has advantages over conventional methods such as active carbon absorption process, chemical oxidation, and biological treatment because the response speed is faster and it does not require expensive, harmful oxidizing agents. This study were performed to examine the possibility of electrochemical treatment for the efficient processing of pickling brine and evaluated the performance of residual chlorine for the microbial sterilization.

A Study on the Control Performance for Hazardous Gases by Surface Discharge induced Plasma Chemical Process (연면방전의 플라즈마 화학처리에 의한 유해가스제어 성능에 관한 연구)

  • 이주상;김신도;김광영;김종호
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.11 no.2
    • /
    • pp.185-190
    • /
    • 1995
  • Recently, because of the worse of the air pollution, the excessive airtught of building and the inferiority of air conditioning system, the development of high efficiency air purification technology was enlarged to the environmental improvement of an indoor or a harmful working condition. The air purification technology has used chemical filters or charcoal filters or charcoal to remove hazardouse gaseous pollutants (SO$_{x}$, NO$_{x}$, NH$_{3}$, etc.) by air pollutant control technology, but they have many problems of high pressure loss, short life, wide space possession, and treatment of secondary wastes. For these reason, the object of reasearch shall be hazardous gaseous pollutants removal by the surface discharge induced plasma chemical process that is A.C. discharge of multistreams applied A.C. voltage and frequency between plane induced eletrode and line discharge eletrode of tungsten, platinum or titanium with a high purified alumina sheet having a film-like plane. As a result, the control performance for hazardous gaseous pollutants showed very high efficiency in the normal temperature and pressure. Also, after comtact oxidation decomposition of harmful gaseous pollutants, the remainded ozone concentration was found much lower than that of ACGIH or air pollution criteria in Korea.rea.

  • PDF

Toxicity Reduction of Wastewater from a Rubber Products Manufacturing Factory by Gamma-ray Treatment (감마선 처리를 이용한 고무공장 폐수의 생물독성 저감)

  • Park, Eun-Joo;Jo, Hun-Je;Cho, Kijong;Kim, Jeong-Gyu;Jung, Jinho
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.5
    • /
    • pp.913-918
    • /
    • 2006
  • Both raw wastewater and effluent from a rubber products manufacturing factory were found to be toxic to Daphnia magna though the effluent satisfied current water quality standards. Thus, in order to reduce toxicity, advanced oxidation processes (AOPs) such as gamma-ray (${\gamma}-ray$) treatment and ozonation ($O_3$) were applied. A combined ${\gamma}-rays/O_3$ treatment at 20 kGy after coagulation significantly reduced toxicity of raw wastewater, changing 48-h toxic unit (TU) value from 201.21 to 23.92. However, toxicity of treated water was higher than that of effluent (TU = 12.15). This shows limitation of gamma-ray treatment to remove toxicity of raw wastewater. In case of effluent, the combined ${\gamma}-rays/O_3$ treatment at 20 kGy efficiently decomposed toxic compounds down to non toxic level. This work strongly supports the necessity of toxicity reduction evaluation as well as toxicity-based effluent management.

Piggery Waste Treatment using Improved MLE Process in Full-Scale (수정된 MLE 공정을 이용한 Full-Scale에서의 돈사분뇨처리)

  • Hwang, In-Su;Min, Kyung-Sok
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.5
    • /
    • pp.895-904
    • /
    • 2006
  • The improved MLE (modified Ludzack-Ettinger) process was operated for piggery waste treatment in full-scale public livestock waste treatment plant. The treated waste from bioreactor was suitable for the strict effluent standard of 200 mgCOD/L and 60 mgTN/L as it was dewatered chemically without settling tank and passed through filtration process. Though this treatment method produced a great deal of sludge ($6.4m^3\;per\;m^3$ dewatered piggery waste) it was able to accomplish predominant effluent quality by removing non-biodegradable COD and color without advanced oxidation process as ozone, fenton and etc.. The nitrogen removal efficiency of bioreactor was rapidly declined from March to May (from 0.016 to 0.005 kgN/kgVSS-day) when disinfection is in earnest as well as from warm season when reactor temperature rises higher than $35^{\circ}C$(from 0.016 to 0.008 kgN/kgVSS-day). This study proves that counterplanes for infection residuals, bioreactor temperature and dewatering sludge reduction are necessary for piggery waste treatment.

Facile Preparation of ZnO Nanocatalysts for Ozonation of Phenol and Effects of Calcination Temperatures

  • Dong, Yuming;Zhao, Hui;Wang, Zhiliang;Wang, Guangli;He, Aizhen;Jiang, Pingping
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.1
    • /
    • pp.215-220
    • /
    • 2012
  • ZnO nanoparticles were synthesized through a facile route and were used as ozonation catalysts. With the increase of calcination temperature ($150-300^{\circ}C$), surface hydroxyl groups and catalytic efficiency of asobtained ZnO decreased remarkably, and the ZnO obtained at $150^{\circ}C$ showed the best catalytic activity. Compared with ozonation alone, the degradation efficiency of phenol increased above 50% due to the catalysis of ZnO-150. In the reaction temperatures range from $5^{\circ}C$ to $35^{\circ}C$, ZnO nanocatalyst revealed remarkable catalytic properties, and the catalytic effect of ZnO was better at lower temperature. Through the effect of tertbutanol on degradation of phenol and the catalytic properties of ZnO on degradation of nitrobenzene, it was proposed that the degradation of phenol was ascribed to the direct oxidation by ozone molecules based on solidliquid interface reaction.

Influence of Wax Molecular Weights on Wax Migration and Evaporation of Rubber Vulcanizates at Room Temperature (상온 노화 후 고무가황물에서 왁스의 이동과 증발에 미치는 왁스의 분자량 분포)

  • Im, Song-Hee;Choi, Sung-Seen
    • Elastomers and Composites
    • /
    • v.44 no.4
    • /
    • pp.397-400
    • /
    • 2009
  • Ozone caused the crack on the surface of a rubber article by oxidation of double bond at room temperature. Wax migrates to the surface of a rubber article and makes a physical barrier to prevent process of ozonation. We investigated change of molecular weight distribution of waxes in unfilled NR, SBR, and BR vulcanizates before and after aging at room temperature for 6 months. Migration and evaporation behaviors of wax in a rubber article at ambient conditions help understand a role of wax as an antidegradant and appearance contamination of a rubber article. The relative intensity distribution of n-alkanes of the NR specimen after the aging was shifted to higher molecular weight compared with the relative intensity distribution before the aging, while those of the SBR specimen before and after the aging did not show a big difference.