• Title/Summary/Keyword: Ozone/BAC Process

Search Result 16, Processing Time 0.02 seconds

Performance of Backwashing Process in Biological Activated Carbon Column (생물활성탄접촉조에서 역세척 공정의 성능)

  • Lee, Gangchoon;Yoon, Taekyung;Moon, Byunghyun;Noh, ByeongIl
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.6
    • /
    • pp.1082-1087
    • /
    • 2006
  • BAC backwashing process in ozone-BAC advanced water treatment process was experimentally studied. The operation and performance of backwashing were evaluated by measuring the effects of water temperature and water input rate on the backwashing interval and duration, and also the change of the amounts of biofilm and HPC in treated water before and after backwashing. The experiments were carried out with the pilot scale test module built in a existing water treatment plant, and the following results were obtained. Longer backwashing time than that of design operating condition was needed for satisfying the suitable turbidity of washing water effluent. Depending on water temperature, 7 days of backwashing cycle was recommended for the period lower than $15^{\circ}C$, and 10 days for the period higher than $15^{\circ}C$. After backwashing, the amounts of biofilm and HPC decreased to 1/10 and 80%, respectively.

Ozone Effect on the Formation of Chlorine Disinfection Byproducts in Water Treatment Process (정수처리공정상 염소소독부산물형성에 미치는 오존의 영향)

  • Seong, Nak Chang;Park, Hyeon Seok;Lee, Seong Sik;Lee, Yong Hui;Lee, Jong Pal;Yun, Tae Gyeong
    • Journal of Environmental Science International
    • /
    • v.13 no.1
    • /
    • pp.55-59
    • /
    • 2004
  • The effect of ozone on the formation and the removal of disinfection byproducts(DBPs) of chlorination process was studied to elucidate the performance of water treatment process. The samples of raw water, prechlorination process, and preozonation process were analyzed quantitatively according to the Standard Methods for the Examination of drinking water. As a result, most of total trihalomethanes(THMs) which were formed in prechlorine treatment process was not removed in the preozonation process. Most of haloacetic acids(HAAs), haloacetonitriles(HANs), and chloral hydrate(CH) was removed in sedimentation and biological activated carbon(BAC) filtration processes. However, DBPs were increased more or less by postchlorine step. In particular, the formation of THMs and HAAs depends on ozone more than chlorine, but, the formation of HANs and CH depends on chlorine more than ozone. The seasonal variation of DBPs concentration for the year needs to be investigated to study the temperature effect because DBPs strongly depend on temperature among various efficient factors.

Removal of 1,4-dioxane in Ozone and Activated Carbon Process (오존과 활성탄 공정해서의 1,4-Dioxane 제거 특성)

  • Son, Hee-Jong;Choi, Young-Ik;Bae, Sang-Dae;Jung, Chul-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.12
    • /
    • pp.1280-1286
    • /
    • 2006
  • Three different virgin activated carbons made of each coal(Calgon), coconut(Samchully) and wood(Picabiol) based activated carbon(AC) were tested for an adsorption performance of 1,4-dioxane in a continuous adsorption column. Breakthrough behavior was Investigated that the breakthrough points of coal, coconut and wood based AC were observed as 3600 bed volumn(BV), 1440 BV and 144 BV respectively. Adsorption capacity(X/M) of coal, coconut and wood based AC was observed. The reported results of adsorption capacity showed that coal based AC was highest(578.9 ${\mu}g/g$), coconut based AC was intermediate(142.3 ${\mu}g/g$) and wood based AC was lowest(7.4 ${\mu}g/g$) due to increasing specific surface area. Moreover, carbon usage rates(CURs) for coal, coconut and wood based AC had been shown as 0.48 g/day, 1.41 g/day and 6.9 g/day respectively. The constant characteristic of the system, k of coal based AC was found to be 91.5 and k of coconut based AC was found to be 17.9. Removal efficiencies of 1,4-dioxane with different ozonation dosages(2 and 5 mg/L) for 20 min ozonation had been shown 38% and 87% respectively. There was no observation for biological removal of 1.4-dioxane by attached micro-organisms when used(3.1 years and over 5 years) biological activated carbon(BAC) without pretreatment of oxidation were employed. When a combination of ozonation(2 mg/L and 5 mg/L) and BAC process for $10{\sim}30$ min was applied, removal efficiency for 1,4-dioxine increased only $2{\sim}6%$ compared to only applying ozonation. Therefore removal efficiency of BAC process prior to using oxidation was proven to negligible. Consequently, the results presented in this paper provide a better insight into the adsorption performance of 1,4-dioxane. This observation suggests that using virgin activated carbon made of coal is the best selection for removal of 1,4-dioxane in the water treatment for an advanced treatment. It is clear from this research that longer EBCT for ozonation or higher ozone concentration are more effective operation methods for removal of 1,4-dioxane than longer EBCT in the BAC process.

Removal Characteristics of Residual Hydrogen Peroxide (H2O2) according to Application of Peroxone Process in O3/BAC Process (O3/BAC 공정에서 Peroxone 공정 적용에 따른 잔류 과산화수소 제거 특성)

  • Yeom, Hoon-Sik;Son, Hee-Jong;Seo, Chang-Dong;Kim, Sang-Goo;Ryu, Dong-Choon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.12
    • /
    • pp.889-896
    • /
    • 2013
  • Advanced Oxidation Processes (AOP) have been interested for removing micropollutants in water. Most of water treatment plants (WTPs) located along the lower part of Nakdong River have adopted the $O_3/BAC$ process and have interesting in peroxone process a kind of AOP. This study evaluated the removal characteristics of residual hydrogen peroxide ($H_2O_2$) combining with the biofiltration process in the next BAC process when the hydrogen peroxide is applied for the WTP operating $O_3/BAC$ process. In the experiment, changing the temperature and the concentration of $H_2O_2$ of influent, the biofiltration process showed rapidly dropped the biodegradability when the $H_2O_2$ concentration was increased and lowered water temperature while BAC process maintained relatively stable efficiency. The influent fixed at $20^{\circ}C$ and the concentration of $H_2O_2$ at 300 mg/L was continuously input for 78 hours. Most of the $H_2O_2$ in the influent did not remove at the biofiltration process controlled 5 to 15 minutes EBCT condition after 24~71 hours operating time while BAC process controlled 5 to 15 minutes EBCT showed 38~91% removal efficiency condition after 78 hours operating time. Besides, after 78 hours continuously input experiment, the biomass and activity of attached bacterial on the biofilter and BAC were $6.0{\times}10^4CFU/g$, $0.54mg{\cdot}C/m^3{\cdot}hr$ and $0.4{\times}10^8CFU/g$, $1.42mg{\cdot}C/m^3{\cdot}hr$ respectively. These biomass and activity values were decreased 99% and 72% in biofilter and 68% and 53% in BAC compared with initial condition. The biodegradation rate constant ($k_{bio}$) and half-life ($t_{1/2}$) in BAC were decreased from $1.173min^{-1}$ to $0.183min^{-1}$ and 0.591 min to 3.787 min respectively according to increasing the $H_2O_2$ concentration from 10 mg/L to 300 mg/L at $5^{\circ}C$ water temperature and the $k_{bio}$ and $t_{1/2}$ were $1.510min^{-1}$ to $0.498min^{-1}$ and 0.459 min to 1.392 min at $25^{\circ}C$ water temperature. By increasing the water temperature from $5^{\circ}C$ to $15^{\circ}C$ or $25^{\circ}C$, the $k_{bio}$ were increased 1.1~2.1 times and 1.3~4.4 times. If a water treatment plant operating $O_3/BAC$ process is considering the hydrogen peroxide for the peroxone process, post BAC could effectively decrease the residual $H_2O_2$, moreover, in case of spilling the $H_2O_2$ into the water process line, these spilled $H_2O_2$ concentration can be able to decrease by increasing the EBCT at the BAC process.

Removal characteristics of NOM in advanced water treatment using ceramic MF membrane (세라믹막(MF) 고도정수처리에서 NOM 제거 특성)

  • You, Sang-Jun;Park, Sung-Han;Lim, Jae-Lim;Suh, Jeong-Min;Jang, Seong-Ho;Hong, Sung-Chul;Yi, Pyong-In
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.28 no.4
    • /
    • pp.367-376
    • /
    • 2014
  • This study assessed the removal efficiency of NOM which is known as the precursors of DBPs in advanced water treatment using the ceramic membrane filtration, introduced the first in the nation at the Y water treatment plant (WTP). It is generally well-known that the removal of NOM by MF Membrane is very low in water treatment process. But, the result of investigation on removal efficiency of NOM in advanced water treatment using the ceramic membrane was different as follows. The removal rate of organic contaminant by the ceramic membrane advanced water treatment was determined to be 65.5% for the DOC, 85.8% for UV254, and 77 to 86% for DBPFP. The removal rate of pre-ozonation was found to be 6 to 15% more effective compared with the pre-chlorination. The removal rate of DOC and $UV_{254}$ in biological activated carbon(BAC) process was over 50% and 75%, respectively although the rate was decreased 10 ~ 20% according to analysis items in converting from GAC to BAC.

Removal of Odorous Compounds Using Ozone and Hydrogen Peroxide (오존과 과산화수소를 이용한 이취미 물질 산화 제거)

  • Lee, Hwa-Ja;Son, Hee-Jong;Roh, Jae-Soon;Lee, Sang-Won;Ji, Ki-Won;Yu, Pyung-Jong;Kang, Lim-Seog
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.12
    • /
    • pp.1323-1330
    • /
    • 2006
  • In this study, five different odor causing compounds in the Nakdong river and rapid sand filtered waters were treated by oxidation from $O_3/H_2O_2$ process. In addition, the change in BDOC formation by the $O_3/H_2O_2$ process was also investigated for considering this advanced oxidation Process as a pre-treatment to the BAC treatment process. The experimental result showed that the removal efficiency of geosmin was higher with the use of 5 mg/L of $O_3$ and 0.2 mg/L of $H_2O_2$ than with the use of 20 mg/L of $O_3$ alone for the sand filtered water. And in general, the removal efficiency of geosmin in raw water was $12{\sim}27%$ lower than the one in sand filtered water. In sand filtered water. the removal efficiencies of geosmin and IPMP decreased when $H_2O_2/O_3$ ratio increases above the optimum ratio. The optimum ratio of $H_2O_2/O_3$ dose was $0.5{\sim}1.0$ for geosmin and $0.2{\sim}1.0$ for IPMP. However, the optimum ratio of $H_2O_2/O_3$ in raw water remove geosmin appealed to $1.0{\sim}3.0$. According to the experimental results for the removal of 5 different odor causing compounds under varied $O_3$ doses, the removal efficiency of IPMP was the highest with 60% and, in overall, $O_3/H_2O_2$ process showed higher removal efficiency than $O_3$ alone process. The BDOC formation by the $O_3/H_2O_2$ process increased from $0.1{\sim}0.25$ to $0.19{\sim}0.34$ comparing to $O_3$ process alone. Therefore, it is concluded that the advanced oxidation process with $O_3/H_2O_2$ can be used as a pretreatment to the BAC treatment process.