ISSN (Print) 1225-7672

Removal characteristics of NOM in advanced water treatment using ceramic MF membrane

세라믹막(MF) 고도정수처리에서 NOM 제거 특성

Sang-Jun You¹ · Sung-Han Park¹ · Jae-Lim Lim² · Jeong-Min Suh³ · Seong-Ho Jang³ · Sung-Chul Hong³ · Pyong-In Yi³

유상준 $^1 \cdot$ 박성한 $^1 \cdot$ 임재림 $^2 \cdot$ 서정민 $^3 \cdot$ 장성호 $^3 \cdot$ 홍성철 $^3 \cdot$ 이병인 $^{3^*}$

¹K-water Geoje Office · ²K-water Institute · ³Department of Bioenvironmental Energy, Pusan National University ¹K-water 거제권관리단 · ²K-water 연구원 · ³부산대학교 바이오환경에너지학과

Abstract : This study assessed the removal efficiency of NOM which is known as the precursors of DBPs in advanced water treatment using the ceramic membrane filtration, introduced the first in the nation at the Y water treatment plant (WTP). It is generally well-known that the removal of NOM by MF Membrane is very low in water treatment process. But, the result of investigation on removal efficiency of NOM in advanced water treatment using the ceramic membrane was different as follows. The removal rate of organic contaminant by the ceramic membrane advanced water treatment was determined to be 65.5% for the DOC, 85.8% for UV254, and 77 to 86% for DBPFP. The removal rate of pre-ozonation was found to be 6 to 15% more effective compared with the pre-chlorination. The removal rate of DOC and UV₂₅₄ in biological activated carbon(BAC) process was over 50% and 75%, respectively although the rate was decreased 10 ~ 20% according to analysis items in converting from GAC to BAC.

Key words : Ceramic membrane, NOM(Natural Organic Matter), GAC, BAC, Ozone 주제어 : 세라믹막, 자연유기물질, 입상활성탄, 생물활성탄, 오존처리

1. 서 론

정수처리공정에서 막공정 도입시 일반정수처 리 공정에 비해 많은 장점을 제공한다. 우선 기존 모래여과에 비해 막여과 공정은 원수 수질 변화 에 상관없이 탁질 등 입자성 물질과 미생물 제거 에 매우 안정되고 일관성 있는 처리 효율을 나타 낸다. 외국문헌이나 실공정 운영결과에 의하면 막 유형이나 제조업체, 응집제 사용여부와 무관하게 평균 여과수 탁도 0.1NTU 이하를 안정적으로 유 지하는 것으로 조사되었다(AWWA, 2005). 또한 침전공정을 생략할 수도 있어 수처리 공정을 컴팩 트화시켜 기존 정수장에 비해 작은 부지가 요구되는 장점도 있다(Cabassud et al., 1991).

하지만 정밀여과(MF)막으로는 0.001 ~ 0.1 μm정도 크기의 용존유기물질(dissolved organic carbon, DOC)에 대한 제거는 곤란하며, 수처리공정에서 소독부산물 전구물질로 알려진 자연유기물질(NOM, Natural Organic Matter)의 제거는 어려운 것으로 알려져 있다(손 등, 2004, Schäfe et al., 2000). 따라서 NOM 제거 효율 향상을 위해서는 일반정수처리공정과 마찬 가지로 정밀여과(MF, microfiltration) 공정에서 도 응집 등 막 전처리 및 오존, GAC 등 고도정수 처리 적용이 필요하다. 막여과와 함께 응집, 고도 처리 공정을 도입시 탁질 뿐 아니라 비가역적 오

Received 10 April 2014, revised 16 June 2014, accepted 30 June 2014.

^{*} Corresponding author: Tel: +81–55–350–5432 Fax: +81–55–350–5439 E-mail: watec@pusan.ac.kr

염물질인 용존 유기물 및 콜로이드성 물질도 플 록 안에 고정화시켜 제거시킬 수 있으며, 오존 활성탄 흡착공정을 통해, 막여과 단독 운전에 비 해서 유기물 및 수중의 무기 콜로이드 입자들 의 제거 효율이 향상된다(Wang et al., 2011; Meyn et al., 2010)

거제시 연초면에 위치한 Y정수장은 1979년 12월에 건설된 16천 m³/일의 규모의 재래식 정 수처리공정으로 노후화로 인한 수처리 문제점 발생으로 2004년 9월부터 정수장 가동을 중지 하였으나, 기존정수장의 제한된 부지조건을 극 복하고 조류발생으로 인한 맛·냄새 및 소독부 산물 처리와 조류와 철·망간에 의한 파울링 현 상을 극복하기 위하여 오존 및 화학약품에도 내 구성이 강한 세라믹막(Clement et al., 2009; Lehman et al., 2009)을 국내 최초로 수돗물 고도정수처리공정(오존+세라믹막+GAC)에 도 입하여 2013년 2월부터 수돗물을 거제시 옥포 지역에 공급하고 있다.

따라서, 본 연구에서는 국내 최초로 수돗물 생 산공정에 세라믹막 고도정수처리공정이 도입된 Y정수장 실공정 운영을 통하여, 계절별 전처리 공정(산화, 응집) 조건에 따른 세라믹막여과 및 활성탄 공정에서의 NOM 및 유기물 제거효율을 비교 분석하였으며, GAC 사용기간 경과에 따라 BAC(Biological Activated Carbon) 공정으로 전환에 따른 제거 효율변화를 조사하였다.

- 2. 실험 및 연구방법
- 2.1 실험재료 및 장치
- 2.1.1 원수 수질 특성

2013년도 2월에서 12월까지 Y정수장 원수 수 질 항목별 특성은 Table 1과 같다.

Y정수장 원수에 대한 NOM 특성을 분석한 결 과 Table 2와 같이 소독부산물 전구물질로 알려 진 소수성의 휴믹물질(Humics)이 35%를 차지 하고 있으며 친수성물질이 65%인 것으로 조사 되었다. 또한 친수성물질중 조류와 박테라아 등 미생물로 인해 발생되는 Polysaccharides 성분 이 14%로 매우 높은 것으로 나타났으며, 원수중 TOC(total organic carbon) 대부분이 DOC 형 태로 존재하는 특성을 나타내었다.

Table 1. Raw Water Qualities of Y Water Treatment Plant

Demonstern	Raw Waters					
Parameter	Average	Maximum	Mimimum			
pН	7.2	7.7	6.6			
Temperature (°C)	20.8	32	8			
Turbidity (NTU)	6.4	18.8	2.9			
COD (mg/L)	3.8	4.4	3.2			
DOC (mg/L)	2.12	2.79	1.40			
UV ₂₅₄ (cm ⁻¹)	0.0532	0.0673	0.0404			
SUVA (L/mg · m)	2.7	3.5	1.7			
D-Mn (mg/L)	0.068	0.277	0.012			

	Ap	prox.Mol	ecularWe	eightsing/n	nol:	>>20.000 ~ 1000				300-500	<350	<350
	TOC	DOC	POC	HOC	HOC CDOC	D' Di	F	Iumic Sub	st.	D. II. II.		
Category	(total OC)	(dis- solved)	(par- ticul)	(hydro- phob)	(hydro- phil)	mers	(HS)	Aroma- ticity	Mol- Weight	blocks	Neutrals	acids
	ppb-C	ppb-C	ppb-C	ppb-C	ppb-C	ppb-C	ppb-C	L/ (mg*m)	g/mol	ppb-C	ppb-C	ppb-C
2009/08/13	2173	2138	35	123	2015	258	886	5.00	705	427	438	6
2010/02/03	2042	2033	8	1	2032	344	753	2.50	685	493	442	0
2010/02/22	2231	2218	13	359	1859	311	629	3.86	685	428	491	0
2010/04/22	2743	2691	52	258	2432	258	639	3.62	695	484	895	157
Aver.	2297	2270	27	185	2085	293	727	3.7	693	458	567	41
Ratio(%)	-	-	-	8	92	14	35	-	-	22	27	2

Table 2. NOM	I characterization	of raw water	by LC-OCE
--------------	--------------------	--------------	-----------

2.1.2 세라믹막

Y정수장에 설치된 세라믹막은 일본 META WATER사의 정밀여과막으로, 막사양은 Table 3에 나타내었으며, 전량여과방식으로 운전된다. 막 flux는 1.5 ~ 2 m³/m² · 일로 운영되며, 4 ~ 5시간 여과 후 물-공기 병행 역세척을 실시한 다. 막형태는 내압 단일체형(Monolith)으로 막 공급수는 막여과 채널로 공급되며, Fig. 1과 같 이 채널 내부벽에 구성되어 있는 분리층에 의하 여 여과가 이루어진 후 여과된 물은 집수셀을 통

Table 3	Characteristics	of MF	ceramic	membrane	element
---------	-----------------	-------	---------	----------	---------

Parameter	Characteristics	Photograph of ceramic membrane
Nominal pore size	0.1 µm	
Dimension	180 mm × 1,500 mmL	
Membrane surface area	25 m ²	
Size of channel	2.5 mm	
Number of channel	2,000	
Material	ceramic	

Fig. 1. Water path of ceramic membrane element in a module.

하여 빠져나간다.

2.1.3 활성탄

활성탄 종류는 Norit사의 GAC 1240(유효경 0.6 mm, 균등계수 1.8) 제품이며, 여과지 규격 은 B2.6 m×L5.5 m (여층두께 3 m) 4지로 구 성되어 있다. 활성탄 접촉시간인 EBCT(Empty Bed Contact Time)값이 14.7분(상수도시설기 준 5 ~ 15분)이며, 여과속도는 293.7 m/day(상수도시설기준 240 ~ 360 m/day) 으로 설계 되어 운영되고 있다.

2.2 연구 방법

2013년도 3월부터 12월까지 10개월간 Y정수 장 실공정에서 전처리공정(산화, 응집) 조건에 따른 세라믹막여과 및 활성탄 공정에서의 NOM 및 유기물 제거효율을 비교 분석하였으며, GAC 사용기간 경과에 따라 BAC 공정으로 전환에 따 른 제거 효율변화를 조사하였다. 막여과 전처리 공정은 원수 수질변화에 따라 오존 또는 차아염 소산나트륨을 0.8 ~ 2.5 mg/L의 범위에서 주 입하였으며, 응집제(A-PAC : Al₂O₃ 10%, 비중 1.20)는 수질에 따라 20 ~ 25 mg/L로 차등 주 입하였으며, 최소 30분 이상의 반응시간을 확보 하였다.

현재 수중의 NOM 분석은 LC-OCD(DOC-Labor)를 이용한 방법이 가장 정확하나 장비가 고가인 관계로 일반적인 사용은 어려운 실정이 다. 따라서 전처리 조건에 따른 세라믹막 여과공 정에서의 NOM 제거 특성을 도출한 후, 월별 제 거 효율 변화는 NOM과 많은 상관관계가 있는 DOC, UV₂₅₄(Weishaar et al., 2003), 소독부 산물FP를 유기물 분석 항목으로 설정하여, 매월 1회이상 분석하였다. Journal of Korean Society of Water and Wastewater Vol. 28, No. 4, pp. 367-376, August, 2014

2.3 분석방법

DOC 농도는 분석시료를 0.45 um PP filter 로 여과한 후 SHIMADZU사의 TOC Anlanyzer (TOC-V CPH)를 이용하여 분석하였으며, UV₂₅₄ 분석은 Standard METHOD 5910 방법 으로 전처리 후 UV-VIS Spectrophotometer (cary 300, varian)을 이용하여 253.7nm 파장 에서 흡광도를 측정하였다.

소독부산물 생성능 분석은 Standard METH OD 5710 B. Trihalomethane Formation Potential 방법을 적용하여 분석시료를 전처 리 후, THMs는 먹는물수질공정시험기준 ES 05601.2b, 퍼지·트랩 GC/FID(450-GC, Bruker) 방법으로 분석하였으며, HAAs는 먹 는물수질공정시험기준 ES 05552.2a, GC/ECD (6890N, Agilent) 방법으로, CH는 먹는물수질 공정시험기준 ES 05551.2b, GC/ECD(7890N, Agilent) 방법으로 분석하였다.

NOM 특성분석은 Direct injection mode를 이용한 size exclusion chromatography와 고감 도 유기탄소 검출기를 장착한 LC-OCD(DOC-Labor model 7, Germany)를 이용하여, **Table** 4와 같은 분석조건으로 전처리 과정 없이 2 ml 의 시료주입 후 약 3시간 안에 분석이 완료되 었고, TOC, DOC, CDOC(Chromatographic DOC) 값을 µg/L 단위로 제시하였다. 아울러 NOM을 분자량 20,000 Da 이상인 고분자물질 인 polysaccharide부터 DBPs 전구물질로 잘

Table 4. Analytical conditions of LC-OCD

Column : TSK HW 40 S, HW 50S
Injection Volumn : 2 ml
Detector : K-200 UV254-Detector, Non-Dispersive Infrared
Detector (NDIR)
Carrier Gas : Nitrogen 4.0 or 5.0, about 20 L/h.
Mobile Phase : Phosphate buffer 28 mmol, pH 6,58, about 2
L/24 hrs.
Acidification Solution : Phosphoric Acid pH 1,5, about 0.6
L/24 hrs.
Measuring Range LC-OCD : >10-5,000 µg/L (compound-
specific)
Detection Limit LC-OCD : 5-50 µg/L (compound-specific)

알려진 humic 물질(500-1,200 Da), building block(350-500 Da), 분자량 350 Da 이하인 acids와 neutral 물질 등으로 분자크기별로 분 리하여 정량값을 제시하였다.

3. 결과 및 고찰

3.1 전처리 조건에 따른 NOM 제거 특성

전처리 조건에 따른 세라믹막 여과공정에서 의 NOM 제거 특성을 조사한 결과는 Table 5와 같다. 전처리 공정에서 A-PAC (Al₂O₃ 10%, 비 중 1.20)를 25 mg/L을 주입하였으며, 응집·막 여과 공정을 통한 NOM 제거 특성과 전오존 처 리에 따른 NOM 특성 변화를 LC-OCD를 이용 하여 분석하였다. Fig 2에서 보듯이 응집·막 여과를 통하여 원수 대비 biopolymer는 79%, humic 물질은 61%, Neutrals는 56% 순으로 전체적으로 큰 폭으로 감소되었으며, 고분자 물 질이 저분자 물질에 비해 제거율이 높은 것으 로 나타나 기존의 연구결과와 일치하며(Amy et al., 1992), 이는 알루미늄 응집제가 소수성 유 기물을 제거한다는 Park 등(2013)의 연구와도 일치한다.

오존 처리에 따른 NOM 특성 변화를 조사하 기 위하여 오존 2 mg/L을 주입후 LC-OCD를 이용하여 NOM을 분석한 결과, Fig 3과 같이 biopolymer의 변화는 거의 없었으며, 소수성인 humic 물질은 미미하게 감소한 반면, UV₂₅₄의 큰 감소로 인해 SUVA값은 3.86에서 1.55 L/ mg·m으로 크게 낮아졌다. 또한, 오존처리수 의 응집·막여과를 통한 NOM 제거율은 미처 리수에 비해 biopolymer 제거율은 9% 증가하 였으나, humic 물질 및 building block 등 저 분자 물질의 제거율은 감소되었으며, SUVA값 은 0.41 L/mg·m로 미처리수보다 낮아진 것 으로 나타났다. 이러한 결과는 오존처리를 통하 여 humic 물질의 탄소 이중결합이 상당량 끊어 져 단일결합로 바뀜으로서. 저분자 유기물질로 변환이 쉬운 구조로 변환됨으로 나타나는 현상

	Ap	prox.Mol	ecularWe	ightsing/n	nol:	>>20.000	~ 1000			300-500	<350	<350
	TOC	DOC	POC	HOC	CDOC	Pio Doly	H	Iumic Sub	st.	D III.		
Category	(total OC)	(dis- solved)	(par- ticul)	(hydro- phob)	(hydro- phil)	mers	(HS)	Aroma- ticity	Mol- Weight	blocks	Neutrals	acids
	ppb-C	ppb-C	ppb-C	ppb-C	ppb-C	ppb-C	ppb-C	L/ (mg*m)	g/mol	ppb-C	ppb-C	ppb-C
Raw water	2743	2691	52	258	2432	258	639	3.62	695	484	895	157
Filtered W.	1243	1214	29	158	1056	55	246	1.01	653	360	395	0
R.E(%)	55	55	43	39	57	79	61	-	-	26	56	100
Raw water	2042	2033	8	1	2032	344	753	2.50	685	493	442	0
ozone 2.0	2002	1954	20	30	1951	340	738	1.55	692	486	388	0
Filtered W.	1206	1203	3	33	1169	43	367	0.41	627	377	383	0
R.E(%)	41	41	60	-	42	88	51	-	-	24	13	-

Table 4. LC-OCD values of the NOM fractions by pretreatment condition

Fig. 2. LC-OCD chromatogram of raw water and filtered water.

으로 판단된다. Westerhoff 등(1999)은 오존처 리에 의한 NOM 구조변형에 대해서 연구한 결 과, 소수성 유기물질중에서도 주로 방향족 구조 를 가지는 물질들만 오존에 의해 구조적인 변 화를 일으키고 주로 탄소 이중결합과 반응하여 carboxyl과 carboxyl 화합물을 형성한다고 보 고하였다.

3.1 DOC 제거 특성

2013년도 3월부터 12월까지 실시한 수처리 공정별 DOC 농도 조사결과는 Table 5 및 Fig. 4와 같다.

전처리 조건에 따른 DOC 농도 변화를 조사 한 결과, 전오존으로 처리 할 경우 약 12% 감소

Fig. 3. LC-OCD chromatogram of raw water, ozonated, filtered water.

하는 것으로 조사되었으며 전염소 처리를 한 경 우 약 13% 증가되는 것으로 나타났다. 이러한 현 상은 강력한 산화제인 오존에 의해 용존유기물 의 일부가 산화되어 제거되나(Hyung 등, 2002; Kim 등, 1999], 전염소 처리를 한 경우에는 수 중에 존재하는 조류 등이 염소에 의해 산화 · 분 해되어 조류 세포내에 있는 유기물질이 방출되 었기 때문에 증가한 것으로 판단된다. 또한 전 염소 처리를 한 시기의 원수중 조류 농도가 전 오존 처리 시기에 비해 훨씬 높았던 것도 전염 소 처리수의 DOC 농도가 증가한 원인으로 판단 된다. 하지만 전처리후 막여과수의 DOC 농도는 원수대비 평균 약 30%가 감소한 것으로 조사되 었으며, 산화제 종류에 따른 제거율은 전오존 처 리시 32%, 전염소 처리시 28%로 전오존 처리 시 제거율이 다소 증가하는 것으로 나타났다. 유 기고분자 막에 비해 세라믹막의 DOC 제거효율 이 높은 이유는 세라믹막 형태가 내압 단일체형 (Monolith)으로 막 공급수가 막여과 채널로 공 급되면, Fig. 1과 같이 채널 내부 단일 흐름 특성 에 의해 여과되는 동안 응집을 촉진시켜 플록 안 에 용존유기물질을 고정화시킴으로서 유기물 제 거효율이 향상되는 것으로 판단된다(Yonekawa et al, 2004).

GAC 유출수의 DOC 농도는 원수 대비 평균 65.5%가 제거된 것으로 조사되었다. 전처리 조 건에 따른 제거율은 전오존 처리시 67.1%, 전염 소 처리시 61.3%로 전오존 처리시 제거율이 약 6% 증가하는 것으로 조사되었다.

GAC 사용기간 경과에 따라 BAC 공정으로 전 환되면서 DOC 제거율 변화를 조사한 결과, 흡 착단계인 초기부터 BAC 초기단계인 7월 초까 지 평균 70% 이상의 높은 제거율이 보였으며, 7

	Parameter		RW	M.I	G.I (M.E)	G.E
DOC Minin (mg/L) R.E com- pared to RW(%)	Ave	2.24	2.29	1.56	0.82	
	Maximum			2.01	1.11	
	Minii	mum	1.42	1.24	1.05	0.32
	R F com-	Average	-	-3.17	29.56	63.54
	pared to RW(%)	Ozone	-	12.1	32.1	67.1
		Chlorine	-	-12.9	27.9	61.3

Table 5. DOC removal efficiency in Water Treatment Process

* RW : raw water, M.I : membrane influent, G.I : GAC influent(=M.E), G.E : GAC effluent, R.E : removal efficiency

Fig. 4. DOC removal efficiency in Water Treatment Process.

월말 이후 제거율이 60%대로 다소 감소하였지 만, 일반적으로 BAC로 전환 단계로 여기는 Bed volume(여과수량을 GAC 체적으로 나눈 값)이 20,000이 넘어선 2013년 11월 이후에도 전처리 조건에 상관없이 평균 50% 이상의 안정된 제거 율을 나타내었다.

3.2 UV₂₅₄

2013년도 3월부터 12월까지 실시한 수처리 공정별 UV₂₅₄ 조사결과는 Table 6 및 Fig. 5와 같다. UV₂₅₄는 수중의 탄소 이중결합과 같은 불 포화결합 및 방향족 물질들의 함량을 나타내는 지표로, 전처리 조건에 따른 UV₂₅₄ 농도 변화를 조사한 결과 DOC 농도 보다 산화제 종류에 따 른 제거율 차이가 크게 발생하는 것으로 나타났 다. 전오존으로 처리 할 경우 37%, 전염소 처리 를 한 경우 4% 감소되는 것으로 조사되어, 염소 에 비해 오존에 의한 UV₂₅₄ 제거 효과가 훨씬 큰 것으로 나타났다. 이러한 현상은 강력한 산화제 인 오존에 의해 humic 물질의 탄소 이중결합들 이 상당량 끊어져 탄소 단일결합과 같은 구조로 바뀌었기 때문인 것으로 판단된다(Choi, 2008).

전처리 공정후 막여과수의 UV₂₅₄는 원수대비 평균 65.1% 감소한 것으로 조사되었으며, 산화 제 종류에 따른 제거율은 전오존 처리시 75.7%, 전염소 처리시 56.7%로, 전오존 처리시 제거율 이 19% 증가하는 것으로 나타났다. GAC 유출수 의 UV₂₅₄ 농도는 원수 대비 평균 85.8%가 제거 되었으며, 전오존 처리시 88.9%, 전염소 처리시 83.2%로 전오존 처리시 제거율이 약 6% 증가하 는 것으로 조사되었다.

GAC 사용기간 경과에 따라 BAC 공정으로 전 환에 따른 UV₂₅₄ 제거율 변화를 조사한 결과, 흡 착단계인 초기부터 BAC 초기단계인 8월까지 평 균 89%의 높은 제거율을 보였으며, BAC 공정 으로 전환 이후에도 평균 75% 이상의 안정된 제 거율을 나타내었다.

수중에 존재하는 NOM의 특징을 SUVA

Parameter			RW	M.I	G.I(M.E)	G.E
UV	Average		0.0532	0.0437	0.0188	0.0079
	Maximum		0.0673	0.0601	0.0262	0.0139
	Minimum		0.0404	0.0252	0.0090	0.0029
(cm ⁻¹)	R.E compared to RW(%)	Average	-	18.64	65.13	85.8
		Ozone	-	37.0	75.7	88.9
		Chlorine	-	4.0	56.7	83.2
SUVA (L/mg · m)		2.375	1.908	1.205	0.96	

Table 6, UV₂₅₄ removal efficiency in Water Treatment Process

* RW : raw water, M.I : membrane influent, G.I : GAC influent(=M.E). G.E : GAC effluent, R.E : removal efficiency

Fig. 5. UV₂₅₄ removal efficiency in Water Treatment Process.

(Specific UV absorbance), 즉 유기탄소농도 에 대한 UV absorbance의 비율을 이용하여 특 성을 파악하기도 하는데, GAC 유출수의 SUVA 값은 0.96 L/mg·m으로 원수 SUVA 값인 2.37 L/mg·m에 비해 낮아져, 전처리, 막여과 및 GAC 공정을 통해서 원수의 용존유기물질 중 소수성, 고분자 유기물질의 약 60%가 제거 또 는 저분자 유기물질로 바뀌었음을 알 수 있다. SUVA 값이 4 이상이면 DOC는 주로 humic 물 질로 이루어져 있으며, 상대적으로 소수성 방향 족 물질과 고분자량 성분을 많이 함유한 유기물 로 구성되며, 3 이하이면 주로 nonhumic 물질 로 이루어져 있으며, 상대적으로 친수성, 비방 향족 물질과 저분자 성분을 많이 함유한 유기물 로 구성되는 것을 나타낸다(Kitis et al, 2001).

3.3 소독부산물 생성능

2013년도 3월부터 12월까지 실시한 수처리 공정별 소독부산물 생성능(THMFP, HAAsFP, CHFP) 조사결과는 Table 7 및 Fig. 6과 같다. 원수의 평균 소독부산물 생성능은 THMFP가 0.066 mg/L, HAAsFP는 0.128 mg/L, CHFP 는 0.018 mg/L로 조사되었으며 계절별 특성 은 하절기에 상승하는 것으로 나타났다. 특히 HAAsFP의 경우 하절기에 먹는물 수질기준(0.1 mg/L)을 초과하는 경우가 많이 발생하는 것으 로 조사되었다.

하지만, 막여과수의 HAAsFP는 평균 0.053 mg/L으로 원수대비 평균 57.4% 감소하였으며, 산화제 종류에 따른 제거율은 전오존시 64.8%, 전염소시 54.1%로, 전오존 처리시 제거율이 약 10% 증가하는 것으로 조사되었다. GAC 유출 수의 HAAsFP는 원수대비 평균 86.2% 제거 되었으며 전오존 처리시 91.1%, 전염소 처리시 84.0%로, 전오존 처리시 제거율이 약 7% 증가 하는 것으로 조사되었다.

또한, 막여과수의 THMFP도 원수대비 평균 50.1% 감소하였으며, 산화제 종류에 따른 제거 율은 전오존시 41.6%, 전염소시 53.9%로, Son 등(2008) 연구와는 달리 전염소 처리시 제거율 이 증가하는 것으로 조사되었는데, 향후 전오 존 처리시 추가적인 조사가 필요할 것으로 판 단된다. 하지만 GAC 유출수의 THMFP는 원수 대비 평균 77.4% 감소하였으며 전오존 처리시 82.2%, 전염소 처리시 75.2%로, 전오존 처리시 제거율이 7% 증가하는 것으로 조사되었다.

마지막으로, 막여과수의 CHFP는 원수대비 평균 38.9% 감소하였으며, 산화제 종류에 따른 제거율은 전오존시 45.0%, 전염소시 36.9%로,

	Darameter		RW/	GI	GE
	I.W.	0.1	G.E		
	Aver	rage	0.066	0.033	0.016
	Maxii	num	0.155	0.097	0.059
THMFP	Minir	num	0.031	0.014	0.004
(mg/L)	R E com-	Average	-	50.1	77.4
	pared to	Ozone	-	41.6	82.2
	RW(%)	Chlorine	-	53.9	75.2
	Aver	age	0.128	0.053	0.018
	Maxii	num	0.213	0.119	0.079
HAAsFP	Minir	num	0.064	0.013	0.001
(mg/L)	R.E com- pared to RW(%)	Average	-	57.4	86.2
		Ozone	-	64.8	91.1
		Chlorine	-	54.1	84.0
	Aver	age	0.018	0.011	0.004
	Maxii	num	0.023	0.023	0.018
CHFP	Minir	num	0.011	0.005	0.000
(mg/L)	R E com-	Average	-	38.9	79.1
	pared to	Ozone	-	45.0	90.4
	RW(%)	Chlorine	-	36.9	75.4

Table 7. DBPsFP removal efficiency in Water Treatment Process

* RW : raw water, **G.I** : GAC influent(=M.E). **G.E** : GAC effluent, R.E : removal efficiency

전오존 처리시 제거율이 약 8% 증가하는 것으 로 조사되었다. GAC 유출수의 CHFP는 원수 대비 평균 79.1% 제거되었으며, 전오존 처리시 90.4%, 전염소 처리시 75.4%로, 전오존 처리 시 제거율이 15% 증가하는 것으로 조사되었다.

GAC 사용기간 경과에 따라 BAC 공정으로 전 환에 따른 소독부산물 생성능 제거율 변화를 조 사한 결과, 흡착단계인 초기부터 BAC 초기단계 인 8월까지 평균 80% 이상의 높은 제거율이 보 였으며, GAC Bed volume 값이 20,000이 넘어 선 BAC 단계에도 전처리 조건에 상관없이 평균 70% 이상의 안정된 제거율을 나타내었다.

결론적으로 전처리후 세라믹막여과 및 활성탄 공정을 통한 소독부산물 생성능 제거효율은 평 균 80% 이상인 것으로 조사되었으며, 막여과 고 도정수처리를 통해 소독부산물 생성능을 먹는물 수질기준 이하로 안정적으로 감소시킬 수 있는 것으로 나타났다.

Fig. 5. DBPs FP removal efficiency in Water Treatment Process.

3.4 결 론

본 연구에서는 세라믹막 고도정수처리 공정 별 전처리 조건에 따른 NOM 및 유기물 제거효 율을 분석하였으며, 다음과 같은 결론을 얻었다.

- 세라믹막 여과공정에서의 NOM 제거 특 성은, 응집·막여과를 통하여 원수 대비 biopolymer는 79%, humic 물질은 61%, Neutrals는 56% 순으로 제거되었으며, 고 분자물질이 저분자물질에 비해 제거율이 높은 것으로 나타났다.
- 세라믹막 고도정수처리 공정별 DOC는 막 여과수에서 원수대비 평균 30%가 제거되 었으며, GAC 유출수는 원수 대비 평균 65.5%가 제거되었다. UV₂₅₄는 막여과수 에서 원수대비 평균 65.1% 제거되었으며, GAC 유출수는 평균 85.8% 제거된 것으 로 나타났다. 전처리 조건에 따른 제거율 은 DOC, UV₂₅₄ 모두 전오존 처리시 전염

소에 비해 약 6% 증가하였다.

- 막여과수와 GAC 유출수의 소독부산물 생 성능은 THMFP가 원수 대비 평균 50.1%, 77.4% 제거되었으며, HAAsFP는 원수 대비 평균 57.4%, 86.2% 제거되었으며, CHFP는 원수대비 평균 38.9%, 79.1% 제 거된 것으로 조사되었다. 또한 전오존 처리 시 전염소 처리에 비해 제거율이 7 ~ 15% 증가하였다.
- 4. GAC에서 BAC 공정으로 전환에 따른 유 기물질 제거효율 변화를 조사한 결과, 초 기 GAC 단계에 비해서는 10 ~ 20% 감소 되었지만, BAC 공정 전환 후에도 원수대 비 DOC는 50%, UV₂₅₄는 75%, 소독부산 물 생성능도 평균 70% 이상 안정적으로 제 거되는 것으로 확인되었다.

참고문헌

- American Water Works Association, (2005) **87**(3), pp.38-49
- Cabassud, C., Anselme, C., Bersillon, J. L. and Aptel, P. (1991)"Ultrafiltration as a nonpolluting alternative to traditional clarification in water treatment," *Filtrat. Sep.*, 28(3), pp.194~198.
- Son, H.J., Jeong, C.W. and Kang, L.S. (2004)"The relationship between disinfection by product formation and characteristics of natural organic matter in the raw water for drinking water", *Korean society of envi*ronmental engineers, 26(4), pp.457-466
- Schäfe r A.I., Schwicker U., Fischer M.M., Fane A.G. and Waite T.D. (2000) "Microfiltration of colloids and natural organic matter", Journal of membrane science, 171(2), pp.151-172
- Wang, S., Liu, C. and Li, Q. (2011)"Fouling of microfiltration membranes by organic polymer coagulants and flocculants: Controlling factors and mechanisms", water research, 45(1), pp.57-365
- Meyn, T. and Leiknes, T. O., (2010)"Comparison of optional process configurations and op-

erating conditions for ceramic membrane MF coupled with coagulation/flocculation pretreatment for the removal of NOM in drinking water production," *Water Supply, Res. Technol. Aqua.*, **59**(2), pp.81~91

- Clement, J. (2009)"Ceramic membranes offer chance to use ozone,"International desalination & water reuse quarterly, 19(1), pp.26-28
- Lehman S.G. ; Liu L. (2009) "Application of ceramic membranes with pre-ozonation for treatment of secondary wastewater effluent," *Water research*, **43**(7), pp.2020-2028
- Weishaar, J. L., Aiken, G. R. Bergamaschi, B. A., Fram, M. S., Fujii, R. and Mopper, K., (2003)"Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon," *Environ.Sci. Technol.*, 37, pp.4702~4708.
- Amy, G., Sierka, R. A., Bedessem, J., Price, D., and Tan, L., (1992). Molecular size distributions of dissolved organic matter. J. Am. Water Works Assoc.,, 84(6), pp.67-75
- Park, K. Y., Choi, Y. H., Jin, Y. C, Kang, S. K., Kweon, J. H. (2013)"Removal of natural organic matter and trihalomethane formation potential by four different coagulants during coagulation-microfiltration processes" *Journal of the Korean Society of Water and Wastewater*, 27(1), pp.101-112
- Westerhoff, P., Debroux, J., Aiken, G., and Amy, g., (1999) "Ozone-induced changes in natural organic matter(NOM) structure," *Ozone Sci. eng.*, 21, pp.551-570
- Hyung, H., Lee, S., Yoon., J. and Lee, C.H., "Effect of preozoantion on flux and water quality in ozonation-ultrafiltration hybrid system for water treatment", Ozone Sci. Eng., 22(6), pp 637~652, 2002.
- Kim, E. H., Kim, Y. U., Son, H. J., Jang, S. H. (1999년)"A fundamental study on ozone oxidation of humic substances" *The Korean journal of sanitation*, 14(3), pp.10-21
- Yonekawa, H., Tomita, Y. and Watanabe, Y.,

"Behavior of Micro-particles in Monolith Ceramic Membrane Filtration with Pre-coagulation", Water Sci. & Technol., 50(12), pp 317~325, 2004.

- Choi, I. H., Jung, Y. J., (2008) "Molecular Size Distributions of NOM in Conventional and Advanced Water Treatment," *Journal of Korean Society on Water Quality*, 24(6), pp.682-689
- Kitis M. (2001) Probing Cholrine Reactivity of Dissolved Organic Matter for Disinfection byproducts (DBP) Formation; Relations with Specific Ultraviolet Absorbance(SUVA) and Development of the DBP Reactivity Profile, Ph.D. Dissertation, Clemson University, Clemson, SC.
- Son, H. J., Roh. J. S., Kim, S. G., Kang, L. S., Lee, Y. D. (2008) "The Removal of Natural Organic Matter and Disinfection By-Product Precursor by Ozone," *Journal of Korean Society on Water Quality*, 24(6), pp.682-689