• Title/Summary/Keyword: Oxygen toxicity

Search Result 378, Processing Time 0.023 seconds

Scavenging Effects of Flavonoids on Paraquat Induced Toxicity (Paraquat 유독성에 대한 Flavonoid류의 독성경감효과)

  • 최병기;조내규
    • Environmental Analysis Health and Toxicology
    • /
    • v.10 no.1_2
    • /
    • pp.47-54
    • /
    • 1995
  • To investigate and evaluated the scavenging and antioxidative effects of various flavonoids on paraquat induced toxicity, in vivo and vitro tests of eight flavonoids (catechin, epocatechin, flavone, chrysin, apigenin, quercetin, morin and biochanin A) were carried out. The generation of reactive oxygen substances(ROS) in PMS-NADH system $H_2O_2$ induced hemolysis and lipidperoxidation to blood, NADPH dependent lipidperoxidation to liver and lung microsome by paraquat were studied.The results are summerized as follows; 1) In the concentration ranges from 3.3 to 9.8$\mu$M of catechin,epicatechin, quercetin and biochanin A removed the 50% of DPPH radical scavenging effects. 2) In the concentration ranges from 0.60 to 1.86 mM of catechin, epicatechin, quercetin and biochanin A showed the inhibitory and antioxidative activity on superoxide anion which gernerated in PMA-NADH system. 3) In the concentration ranges from 0.12 to 0.49mM of catechin, epicatechin, quercetin and biochanin A showed the inhibitory and antioxidative activity on H202 which generated in PMA-NADH system. 4) In the concentration ranges from 0.6 x10$^{-5}$ to 6.3 x 10$^{-5}$mM of catechin, epicatechin, flavone, chrysin, quercetin and morin showed the inhibitory and antioxidative activity on $H_2O_2$ induced hemolysis to blood 5) All flavonoids tested exhibited inhibitory and antioxidative effects on paraquat induced liver and tung microsomal lipidperoxidation. Therefore, all flavonoids evaluated showed the useful compounds for scavenger and antioxidant on paraquat induced toxicity.

  • PDF

Effects of Curcumin, the Active Ingredient of Turmeric(Curcuma longa), on Regulation of Glutamate-induced Toxicity and Activation of the Mitogen-activated Protein Kinase Phosphatase-1 (MKP-1) in HT22 Neuronal Cell

  • Lee, Sang-Hyun;Yun, Young-Gab
    • Natural Product Sciences
    • /
    • v.15 no.1
    • /
    • pp.32-36
    • /
    • 2009
  • Glutamate causes neurotoxicity through formation of reactive oxygen species and activation of mitogen-activated protein kinase (MAPK) pathways. MAPK phosphatase-1 (MKP-1) is one of the phosphatases responsible for dephosphorylation/deactivation of three MAPK families: the extracellular signal-regulated kinase-1/2 (ERK-1/2), the c-Jun N-terminal kinase-1/2 (JNK-1/2), and the p38 MAPK. In this report, the potential involvement of MKP-1 in neuroprotective effects of curcumin, the active ingredient of turmeric (Curcuma longa), was examined using HT22 cells. Glutamate caused cell death and activation of ERK-1/2 but not p38 MAPK or JNK-1/2. Blockage of ERK-1/2 by its inhibitor protected HT22 cells against glutamate-induced toxicity. Curcumin attenuated glutamate-induced cell death and ERK-1/2 activation. Interestingly, curcumin induced MKP-1 activation. In HT22 cells transiently transfected with small interfering RNA against MKP-1, curcumin failed to inhibit glutamate-induced ERK-1/2 activation and to protect HT22 cells from glutamate-induced toxicity. These results suggest that curcumin can attenuate glutamate-induced neurotoxicity by activating MKP-1 which acts as the negative regulator of ERK-1/2. This novel pathway may contribute to and explain at least one of the neuroprotective actions of curcumin.

Theoretical Approach for Physicochemical Factors Affecting Human Toxicity of Dioxins (다이옥신의 인체 독성에 영향을 미치는 물리화학적 인자에 대한 이론적 접근)

  • 황인철;박형석
    • Environmental Analysis Health and Toxicology
    • /
    • v.14 no.1_2
    • /
    • pp.65-73
    • /
    • 1999
  • Dioxins refer to a family of chemicals comprising 75 polychlorinated dibenzo-p-dioxin (PCDD) and 135 polychlorinated dibenzo-p-furan (PCDF) congeners, which may cause skin disorder, human immune system disruption, birth defects, severe hormonal imbalance, and cancer. The effects of exposure of dioxin-like compounds such as PCBs are mediated by binding to the aryl hydrocarbon receptor (AHR), which is a ligand-activated transcription factor. To grasp physicochemical factors affecting human toxicity of dioxins, six geometrical and topological indices, eleven thermodynamic variables, and quantum mechanical descriptors including ESP (electrostatic potential) were analyzed using QSAR and semi-empirical AM1 method. Planar dioxins with high lipophilicity and large surface tension show the probability that negative electrostatic potential in the lateral oxygen may make hydrogen bonding with DNA bases to be a carcinogen.

  • PDF

Monoamine Oxidase Inhibitors Attenuate Cytotoxicity of 1-Methyl-4-phenylpyridinium by Suppressing Mitochondrial Permeability Transition

  • Lee, Chung-Soo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.10 no.4
    • /
    • pp.207-212
    • /
    • 2006
  • Mitochondrial permeability transition has been shown to be involved in neuronal cell death. Mitochondrial monoamine oxidase (MAO)-B is considered to play a part in the progress of nigrostriatal cell death. The present study examined the effect of MAO inhibitors against the toxicity of 1-methyl-4-phenylpyridinium $(MPP^+)$ in relation to the mitochondrial permeability transition. Chlorgyline (a selective inhibitor of MAO-A), deprenyl (a selective inhibitor of MAO-B) and tranylcypromine (nonselective inhibitor of MAO) all prevented cell viability loss, cytochrome c release, caspase-3 activation, formation of reactive oxygen species and depletion of GSH in differentiated PC12 cells treated with $500\;{\mu}M$$MPP^+$. The MAO inhibitors at $10\;{\mu}M$ revealed a maximal inhibitory effect and beyond this concentration the inhibitory effect declined. On the basis of concentration, the inhibitory potency was tranylcypromine, deprenyl and chlorgyline order. The results suggest that chlorgyline, deprenyl and tranylcypromine attenuate the toxicity of $MPP^+$ against PC12 cells by suppressing the mitochondrial permeability transition that seems to be mediated by oxidative stress.

Toxicity of Nanoparticle Magnetic Ferrofluid Coated with Hematoporphyrin in Rats

  • Hwang, Youn-Hwan;Lim, Jong-Hwan;Park, Beyong-Kwon;Yun, Hyo-In;Kim, Chong-Oh
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2002.11b
    • /
    • pp.159-159
    • /
    • 2002
  • Magnetic ferrofluids attract much attention in realation with their capacity as carriers to increase local concentrations of drugs in specific targeted site. Hematoporphyrin (HP) is known to have anticancer activater by producing reactive oxygen species on irraiation of light.(omitted)

  • PDF

Induction of Oxidative Stress by Mananese Chloride in Cultured $H_9C_2$ Cells (랫드 심근세포유래 $H_9C_2$ 세포주에서의 망간화합물의 산화적스트레스 유도작용)

  • Park, Eun-Jung;Park, Kwang-Sik
    • YAKHAK HOEJI
    • /
    • v.52 no.3
    • /
    • pp.212-218
    • /
    • 2008
  • Manganese is a naturally occurring element which is widespread in the environment. Also, manganese is an essential trace element and plays a key role in important biological reactions catalyzed by enzymes. However, exposure to high levels of manganese can cause toxicity in neurone and inhalation system, also damage in various tissues. We investigated the toxicity induced by manganese compound ($MnCl_2$) in cultured rat cardiomyocytes. Treatment of manganese to cultured cardiomyocyte led to cell death, reactive oxygen species (ROS) increase, and cytosolic caspase-3 activation. The ROS increase was related with the decreased level of glutathione. Expressions of ROS related genes such as heme oxygenase-1, thioredoxin reductase, and NADH quinone oxidase were significantly induced in manganese treated cells. These results suggest that manganese induce oxidative stress and apoptosis in cardiomyocytes, and may be the one of risk factors to cause heart dysfunction in vivo.

Molecular Mechanism for Methylmercury-induced Toxicity in Kidney and Brain Cells

  • Kim, Dae-Kyong;Kang, Mi-Sun;Jeong, Ju-Yeon;Jung, Sung-Yun;Seo, Ji-Heui;Joseph V.Bonventre
    • Proceedings of the PSK Conference
    • /
    • 2003.10a
    • /
    • pp.74-74
    • /
    • 2003
  • Methylmercury (MeHg) is a ubiquitous environmental toxicant that can be exposed to humans by ingestion of contaminated food including fish and bread. MeHg has been suggested to exert its toxicity through its high reactivity to thiols, generation of arachidonic acid and reactive oxygen species (ROS), and elevation of intracellular $Ca^{2+}$ levels ([$Ca^{2+}$]i). However, the precise mechanism has not been fully defined. (omitted)

  • PDF

Pulmonary Fibrosis caused by Asbestos Fibers in the Respiratory Airway

  • Jung, Ji-Woo;Kim, Eung-Sam
    • Biomedical Science Letters
    • /
    • v.27 no.3
    • /
    • pp.111-120
    • /
    • 2021
  • Asbestos products had been widely used until 2007 in Korea since the 1930s. A total ban on their production and applications has been imposed because of the toxic effect of asbestos fibers on the human health. The inhaled asbestos fibers increase reactive oxygen species and inflammatory reactions in the respiratory airway including the alveolar sac, resulting in DNA damages and secretion of several inflammatory cytokines or chemokines. These paracrine communications promote the proliferation of fibroblasts and the synthesis of collagen fibers, thereby depositing them into the extracellular matrix at the interstitial space of alveoli. The fibrotic tissue hindered the gas exchange in the alveolus. This reviews describes not only the cytotoxic effects of asbestos fibers with different physical or chemical characteristics but also the interaction of cells that make up the respiratory airway to understand the molecular or cellular mechanisms of asbestos fiber-induced toxicity. In addition, we propose a pulmonary toxicity research technique based on the mini-lung that can mimic human respiratory system as an alternative to overcome the limitations of the conventional risk assessment of asbestos fibers.

Toxic Effects of Phenol on Survival and Oxygen Consumption of the Abalone Juvenile, Haliotis discus hannai (참전복, Haliotis discus hannai 치패의 생존과 산소소비에 미치는 phenol의 독성 영향)

  • KIM Heung-Yun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.30 no.3
    • /
    • pp.496-504
    • /
    • 1997
  • This study was carried out to estimate toxic effects of phenol on survival and metabolism of the abalone juvenile, Haliotis discus hannai. The experiment was conducted by renewal bioassay procedure with different salinities at $20^{\circ}C$. The $LC_{50}$ of the juvenile exposed to phenol in the range of 0.5 and $100mg/\ell\;was\;34.3\~6.5mg/\ell\;at\;2.4\%_{\circ}\;and\;52.2\~9.3m/\ell\;at\;32\%_{\circ}$ salinity with exposure time from 24 hours to 96 hours. $LT_{50}$ was remarkablely reduced with increase of phenol conentration and decrease of salinity. Lethal toxicity or phenol was higher at low salinity than at high salinity. Therefore, salinity is likely to be one of factor to increase phenol toxicity. The oxygen consumption of the juvenile was reduced with increase of phenol concentration and with decrease of salinity. In spite of phenol toxicity, the oxygen consumption of the juvenile exposed to phenol of low concentration was high and similar as compared with that of control group. Survival rates of the abalone kept in phenol-free sea water after exposure to phenol concentration of 5, 10 and $20mg/\ell$ for 96 hours were reduced with decrease of salinity. Durations required to recover the normal metabolic rate of the juvenile, which was exposed to phenol concentration of 5, 10 and $20mg/\ell$ for 96 hours, were made longer with increasing phenol concentration. In the case of the juvenile exposed to sublethal concentration of phenol for 15 days, it were elongated as compared with that of the abalone exposed to phenol concentration caused acute toxicity. The result of this experiment indicated that relatively low concentration of phenol can impact on the abalone juvenile in marine ecosystem.

  • PDF

Pretreatment of Hyperbaric Oxygenation Increases the Activities of Myocardial Antioxidant Enzymes and Protects the Ischemia-Reperfusion Injury of the Heart (고압산소 전처치의 심근 항산화효소 활성 증가 및 허혈-재관류손상 보호 효과)

  • Oh, Dong-Jin;Kim, Young-Hoon;Kim, Chan-Hyung;Park, Jong-Wan;Kim, Myung-Suk
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.6
    • /
    • pp.749-758
    • /
    • 1997
  • Myocardial ischemia-reperfusion injury is known to be mediated by reactive oxygen species. The myocardial cell is equipped with endogenous antioxidant defensive system which can be adaptively stimulated by various oxidative stress. It is postulated that an increased oxygen partial pressure induced by hyperbaric oxygenation impose an oxidative stress on the cells, resulting alterations in the endogenous antioxidant system. In this study we investigated the effect of hyperbaric oxygenation on the activities of myocardial antioxidant enzymes and observed whether the hyperbaric oxygenation could protect the ischemia-reperfusion injury of heart. Rats or rabbits were pretreated with hyperbaric $oxygenation(2{\sim}3\;atm\;O_2/1{\sim}3\;hrs/1{\sim}10\;days)$. The changes in activities of major antioxidant enzymes(superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, glucose-6-phasphate dehydrogenase), functional recovery and infarct size were observed in the experimentally induced ischemia-reperfused hearts. In the hearts isolated from rats pretreated with $2\;atm\;O_2/1{\sim}2\;hrs$ for 5 days, the functional recovery after reperfusion(20 min) following global ischemia(25 min) was significantly increased without any observable oxygen toxicity. Lactate dehydrogenase release was also significantly reduced in this hyperbaric oxygenated rat hearts. In in vivo regional ischemia(30 min) model of rabbit hearts, pretreatrment with $2\;atm\;O_2/1\;hr$ for 5 days significantly limited the infarct size. Among the myocardial antioxidant enzymes of rat hearts pretreated with the hyperbaric oxygenation, the activities of catalase, superoxide dismutase and glucose-6-phosphatase dehydrogenase were increased, while those of glutathione peroxidase and reductase were not changed. There were lethal cases in the groups of rats exposed to 3 atm $3\;atm\;O_2/2{\sim}3\;hrs$ for 5 days. A lipid-peroxidation product, rnnlondialdehyde was increased in brains and livers of the rats exposed to$2\;atm\;O_2/2{\sim}3\;hrs/5\;days\;and\;3\;atm\;O_2/1\;hr/5days$. The present results suggest that the pretreatment of hyperbaric oxygenation can protect the post-ischemic rererfused hearts in association with a stimulation of the activities of myocardial antioxidant defensive enzymes, and that the hyperbaric oxygenation of $2\;atm\;O_2/1\;hr$for 5 days would be a safe condition which does not produce any oxygen toxicity.

  • PDF