References
- Andoh T, Chock PB, Murphy DL, Chiueh CC. Role of the redox protein thioredox in cytoprotective mechanism evoked by (-)-deprenyl. Mol Pharmacol 68: 1408-1414, 2005 https://doi.org/10.1124/mol.105.012302
- Birkmayer W, Knoll J, Riederer P, Youdim MB, Hars V, Marton J. Increased life expectancy resulting from addition of L-deprenyl to Madopar treatment in Parkinson's disease: a longterm study. J Neural Transm 64: 113-127, 1985 https://doi.org/10.1007/BF01245973
-
Cassarino DS, Parks JK, Parker Jr WD, Bennett Jr JP. The Parkinsonian neurotoxin
$MPP^+$ opens the mitochondrial permeability transition pore and releases cytochrome c in isolated mitochondria via an oxidative mechanism. Biochim Biophys Acta 1453: 49-62, 1999 https://doi.org/10.1016/S0925-4439(98)00083-0 - Chandra J, Samali A, Orrenius S. Triggering and modulation of apoptosis by oxidative stress. Free Radic Biol Med 29: 323-333, 2000 https://doi.org/10.1016/S0891-5849(00)00302-6
- Constantini PC, Chernyak BC, Petronilli V, Bernardi P. Modulation of the mitochondrial permeability transition pore by pyridine nucleotides and dithiol oxidation at two separate sites. J Biol Chem 271: 6746-6751, 1996 https://doi.org/10.1074/jbc.271.12.6746
- Crompton M. The mitochondrial permeability transition pore and its role in cell death. Biochem J 341: 233-249, 1999 https://doi.org/10.1042/0264-6021:3410233
- Crow MT, Mani K, Nam Y-J, Kitsis RN. The mitochondrial death pathway and cardiac myocyte apoptosis. Circ Res 95: 957-970, 2004 https://doi.org/10.1161/01.RES.0000148632.35500.d9
-
Fonck C, Baudry M. Toxic effects of
$MPP^+$ and MPTP in PC12 cells independent of reactive oxygen species formation. Brain Res 905: 199-206, 2001 https://doi.org/10.1016/S0006-8993(01)02551-3 -
Fu W, Luo H, Parthasarathy S, Mattson MP. Catecholamines potentiate amyloid
$\beta$ -peptide neurotoxicity: involvement of oxidative stress, mitochondrial dysfunction, and perturbed calcium homeostasis. Neurobiol Dis 5: 229-243, 1998 https://doi.org/10.1006/nbdi.1998.0192 - Hall AG. The role of glutathione in the regulation of apoptosis. Eur J Clin Invest 29: 238-245, 1999 https://doi.org/10.1046/j.1365-2362.1999.00447.x
- Kadota T, Yamaai T, Saito Y, Akita Y, Kawashima S, Moroi K, Inagaki N, Kadota K. Expression of dopamine transporter at the tips of growing neurites of PC12 cells. J Histochem Cytochem 44: 989-996, 1996 https://doi.org/10.1177/44.9.8773564
- Kim R, Emi M, Tanabe K. Role of mitochondria as the gardens of cell death. Cancer Chemother Pharmacol 57: 545-553, 2006 https://doi.org/10.1007/s00280-005-0111-7
-
Lai C-T, Yu PH. Dopamine- and L-
$\beta$ -3,4-dihydroxyphenylalanine hydrochloride (L-DOPA)-induced cytotoxicity towards catecholaminergic neuroblastoma SH-SY5Y cells. Effects of oxidative stress and antioxidative factors. Biochem Pharmacol 53: 363-372, 1997 https://doi.org/10.1016/S0006-2952(96)00731-9 -
Le W, Jankovic J, Xie W, Kong R, Appel SH. (-)-Deprenyl protection of 1-methyl-4-phenylpyridium ion (
$MPP^+$ )-induced apoptosis independent of MAO-B inhibition. Neurosci Lett 224: 197-200, 1997 https://doi.org/10.1016/S0304-3940(97)00170-5 - Lee CS, Han ES, Jang YY, Han JH, Ha HW, Kim DE. Protective effect of harmalol and harmaline on MPTP neurotoxicity in the mouse and dopamine-induced damage of brain mitochondria and PC12 Cells. J Neurochem 75: 521-531, 2000 https://doi.org/10.1046/j.1471-4159.2000.0750521.x
-
Lee CS, Han JH, Jang YY, Song JH, Han ES. Differential effect of catecholamines and
$MPP^+$ on membrane permeability in brain mitochondria and cell viability in PC12 cells. Neurochem Int 40: 361-369, 2002 https://doi.org/10.1016/S0197-0186(01)00069-9 -
Lee CS, Park SY, Ko HH, Song JH, Shin YK, Han ES. Inhibition of
$MPP^+$ -induced mitochondrial damage and cell death by rifluoperazine and W-7 in PC12 cells. Neurochem Int 46; 169-178, 2005 https://doi.org/10.1016/j.neuint.2004.07.007 - Lotharius J, Dugan LL, O'Malley KL. Distinct mechanisms underlie neurotoxin-mediated cell death in cultured dopaminergic neurons. J Neurosci 19: 1284-1293, 1999 https://doi.org/10.1523/JNEUROSCI.19-04-01284.1999
- Maher P, Davis JB. The role of monoamine metabolism in oxidative glutamate toxicity. Neuroscience 16: 6394-6401, 1996 https://doi.org/10.1523/JNEUROSCI.16-20-06394.1996
- Marcocci L, De Marchi U, Salvi M, Milella ZG, Nocera S, Agostinelli E, Mondovi B, Toninello A. Tyramine and monoamine oxidase inhibitors as modulators of the mitochondrial membrane permeability transition. J Membr Biol 188: 23-31, 2002 https://doi.org/10.1007/s00232-001-0169-z
- Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65: 55-63, 1983 https://doi.org/10.1016/0022-1759(83)90303-4
- Obata T. Dopamine efflux by MPTP and hydroxyl radical generation. J Neural Transm 109: 1159-1180, 2002 https://doi.org/10.1007/s00702-001-0683-2
-
Rojas P, Rios C. Increased striatal lipid peroxidation after intracerebroventricular
$MPP^+$ administration to mice. Pharamcol Toxicol 72: 364-368, 1993 https://doi.org/10.1111/j.1600-0773.1993.tb01345.x - Tan S, Sagara Y, Liu Y, Maher P, Schubert D. The regulation of reactive oxygen species production during programmed cell death. J Cell Biol 141: 1423-1432, 1998 https://doi.org/10.1083/jcb.141.6.1423
- Tatton WG, Chalmers-Redman RME. Modulation of gene expression rather than monoamine oxidase inhibition. Neurology 47(Suppl. 3): S171-S183, 1996 https://doi.org/10.1212/WNL.47.6_Suppl_3.171S
- Tatton WG, Chalmers-Redman RME, Ju WJH. Mammen M, Carlile GW, Pong AW, Tatton NA. Propargylamines induce antiapoptotic new protein synthesis in serum- and nerve growth factor (NGF)-withdrawn, NGF-differentiated PC-12 cells. J Pharmacol Exp Ther 301: 753-764, 2002 https://doi.org/10.1124/jpet.301.2.753
- Tatton WG, Chalmers-Redman RME, Tatton NA. Neuroprotection by deprenyl and other propargylamines: glyceraldehydes-3-phosphate dehydrogenase rather than monoamine oxidase B. J Neural Transm 110: 509-515, 2003 https://doi.org/10.1007/s00702-002-0827-z
- Vaglini F, Pardini C, Cavalletti M, Maggio R, Corsini GU. L-deprenyl fails to protect mesencephalic dopamine neurons and PC12 cells from the neurotoxic effect of 1-methyl-4-phenylpyridinium ion. Brain Res 741: 68-74, 1996 https://doi.org/10.1016/S0006-8993(96)00898-0
- van Klaveren RJ, Hoet PH, Pype JL, Demedts M, Nemery B. Increase in gamma-glutamyltransferase by glutathione depletion in rat type II pneumocytes. Free Radic Biol Med 22: 525-534, 1997 https://doi.org/10.1016/S0891-5849(96)00375-9
-
Wu RM, Chen RC, Chiueh CC. Effect of MAO-B inhibitors on
$MPP^+$ toxicity in Vivo. Ann NY Acad Sci 899: 255-261, 2000 https://doi.org/10.1111/j.1749-6632.2000.tb06191.x - Yi H, Akao Y, Maruyama W, Chen K, Shih J, Naoi M. Type A monoamine oxidase is the target of an endogenous dopaminergic neurotoxin, N-methyl(R)salsolinol, leading to apoptosis to apoptosis in SH-SY5Y cells. J Neurochem 96: 541-549, 2006 https://doi.org/10.1111/j.1471-4159.2005.03573.x