• Title/Summary/Keyword: Oxygen membrane

Search Result 870, Processing Time 0.025 seconds

Design, fabrication, and performance analysis of a twisted hollow fibre membrane module configuration

  • Palmarin, Matthew J.;Young, Stephanie;Lee, Tsun Ho
    • Membrane and Water Treatment
    • /
    • v.6 no.1
    • /
    • pp.15-26
    • /
    • 2015
  • The compact structure and high-quality effluent of membrane bioreactors make them well-suited for decentralized greywater reclamation. However, the occurrence of membrane fouling continues to limit their effectiveness. To address this concern, a unique membrane module configuration was developed for use in a decentralized greywater treatment system. The module featured local aeration directly below a series of inclined membrane bundles, giving the overall module a twisted appearance compared to a module with vertically orientated fibres. The intent of this design was to increase the frequency and intensity of collisions between rising air bubbles and the membrane surface. Material related to the construction of custom-fit modules is rarely communicated. Therefore, detailed design and assembly procedures were provided in this paper. The twisted module was compared to two commercially available modules with diverse specifications in order to assess the relative performance and marketability of the twisted module with respect to existing products. Contaminant removal efficiencies were determined in terms of biochemical oxygen demand, chemical oxygen demand, ammonia, total nitrogen, total phosphorus, and turbidity for each module. Membrane fouling was monitored in terms of permeate flux, transmembrane pressure, and membrane resistance. Following 168 h of operation, the twisted module configuration demonstrated competitive performance, indicating good potential for further development and commercialization.

Chlor-alkali Membrane Process and its Prospects (클로알칼리 멤브레인법과 전망)

  • Park, In Kee;Lee, Chang Hyun
    • Membrane Journal
    • /
    • v.25 no.3
    • /
    • pp.203-215
    • /
    • 2015
  • Chlor-alkali (CA) membrane process is based on salined water electrolysis employing cation condutive polymer electrolytes, which has been used for the conventional production of both sodium hydroxide and chlorine gas. The CA membrane process has advantages such as relatively low environmental impacts and fairly reduced energy consumption, when compared with diaphragm and mercury process. In this review articles, basic concepts, fundamental characteristics, key technologies of CA membrane process are dealt with in detail. In addition, advanced technologies associated with CA membrane process are described. They include zerogap and oxygen depolarized cathode technologies to improve energy efficiency during the electrolysis. Carbon dioxide mineralization technology will also be introduced as an example of hybridization with different technologies. Finally, current market trend in CA membrane process will be presented.

Reducing the Test Time for Chemical Durability of PEMFC Polymer Membrane (PEMFC 고분자막의 화학적 내구성 평가시간 단축)

  • Oh, Sohyeong;Cho, Wonjin;Lim, Daehyeon;Yoo, Donggeun;Park, Kwonpil
    • Korean Chemical Engineering Research
    • /
    • v.59 no.3
    • /
    • pp.333-338
    • /
    • 2021
  • The durability of the PEMFC stack for large commercial vehicles should be more than 5 times that for passenger vehicles. If the Chemical Accelerated Stress Test (AST) of PEMFC(Proton Exchange Membrane Fuel Cells) membrane for passenger cars is applied as it is for large commercial vehicles, there is a problem that the AST time becomes more than 2,500 hours. In order to shorten the AST time of DOE (Department of Energy), the chemical durability of the polymer membrane was evaluated using oxygen instead of air as a cathode gas. In this study, Nafion XL was used as a polymer membrane to evaluate accelerated durability under OCV, 90?, RH 30%, H2/(air or oxygen) conditions. Among the DOE membrane durability target criteria, the decrease rate of short resistance was the fastest. By using oxygen instead of air, the degradation rate of the polymer membrane was accelerated while being less affected by electrode deterioration, reducing the polymer membrane durability evaluation time to less than half.

Evaluation of pure oxygen with MBR(Membrane Bio Reactor) process for anaerobic digester effluent treatment from food waste (순산소의 MBR(Membrane Bio Reactor) 공정 적용을 통한 음식물류 폐기물 혐기성소화 유출수 처리 평가)

  • Park, Seyong;Kim, Moonil;Park, Seonghyuk
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.29 no.3
    • /
    • pp.5-16
    • /
    • 2021
  • In this study, the applicability of the MBR(Membrane Bio Reactor) process of oxygen dissolve was evaluated through comparison and evaluation of the efficiency of oxygen dissolve device and conventional aeration device in the explosive tank within the MBR process. The organic matter and ammonia oxidation by oxygen dissolve device were evaluated, and the efficiency of persaturation was evaluated by applying real waste water (anaerobic digester effluent treatement from food waste). SCOD and ammonia removal rates for oxygen dissolve device and conventional aeration device methods were similar. However, it was determined that the excess sludge treatment cost could be reduced as the yield of microorganisms by oxygen dissolve device is about 0.03 g MLSS-produced/g SCOD-removed lower than that of microorganisms by conventional aeration device. The removal rates of high concentrations of organic matter (4,000 mg/L) and ammonia (1,400 mg/L) in anaerobic digester effluent treatment from food waste were compared to the conventional aeration device and the oxygen dissolve device organic matter removal rate was approximately 13% higher than that of the conventional aeration device. In addition, for MLSS, the conventional aeration device was 0.3 times higher than for oxygen dissolve device. This is believed to be due to the high progress of sludge autooxidation because the dissolved oxygen is sufficiently maintained and supplied in the explosive tank for oxygen dissolve device. Therefore, it was determined that the use of oxygen dissolve device will be more economical than conventional aeration device as a way to treat wastewater containing high concentrations of organic matter.

Active role of oxygen on penicillin sensitivity and fromation of membrane protein in escherichia coli K12 (Escherichia coli K12의 막단백질 형성과 페니실린 민감성에 대한 산소의 능동적 역할)

  • 박현근;한홍의
    • Korean Journal of Microbiology
    • /
    • v.24 no.3
    • /
    • pp.263-269
    • /
    • 1986
  • Membrane proteins of facultatively anaerobic Escherichia coli K12 which was logarithmically grown in aerobiosis and anaerobiosis were compared on 5 to 10% liner gradient gel electrophoresis (Na Dod $SO_4 -PAGE$). Membrane proteins were formed as different patterns between aerobiosis and anaerobiosis. Among them, 91Kdal protein (pbp1a) was not synthesized in aerobiosis and 60Kdal protein (fts cluster), in anaerobiosis. Thereby cells cultured aerobically were differenciated as diversiform cell shape, comparing cells cultured anaerobically and the latter were resistant to penicillin G. Thus it is believed that in facultative anaerobes atmospheric oxygen regulated the synthesis of membrane proteins and even the expression of equivalent genes, and moreover alleviated the resistance to an antibiotic penicillin.

  • PDF

A Study on the Enhancement of Oxygen Permeability by Silicone in Polymeric Membranes (고분자분리막의 실리콘에 의한 산소투과향상에 관한 연구)

  • 변홍식
    • Membrane Journal
    • /
    • v.9 no.3
    • /
    • pp.151-156
    • /
    • 1999
  • Silicone was used in this study to enhance the oxygene permeability of gas separation membranes. PMP and PMMA were used to prepare the copolymers and IPN membranes, respectively. In the case of copolymers, there were two methodsCswelling and solvent evaporation) in this study and it was revealed that this preparation method affected the oxygene permeability. It was also shown that the IPN method brought the enhacement of oxygen permeability and slight decrease of separation factor. Regarding oxygen permeability 10 wt% of PMMA was the best composition of IPN membrane.

  • PDF