• Title/Summary/Keyword: Oxygen flow rate

Search Result 689, Processing Time 0.023 seconds

A Study on Fretting-Wear Behavior of Inconel 690 due to Surrounding Temperature (주위 온도에 따른 Inconel690의 마멸 거동에 관한 연구)

  • 임민규;박동신;김대정;이영제
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.296-303
    • /
    • 2001
  • In nuclear power steam generators, high flow rates can induce vibration of the tubes resulting in fretting wear damage due to contacts between the tubes and their supports. In this paper the fretting wear tests and the sliding wear tests were performed using the steam generator tube materials of Inconel 690 against STS 304. Sliding tests with the pin-on-disk type tribometer were done under various applied loads and sliding speeds at air and water environment. Fretting tests were done under various vibrating amplitudes, applied normal loads and various temperatures. From the results of sliding and fretting wear tests, the wear of Inconel 690 can be predictable using the work rate model. Depending on normal loads and vibrating amplitudes, distinctively different wear mechanisms and often drastically different wear rates can occur. At room temperature, the wear coefficient K of Inconel 690 is 7.57${\times}$10$\^$13/Pa$\^$1/ in air and it is 1.93${\times}$10$\^$13/Pa$\^$1/ in water. At room temperature, it is found that the wear volume in air is more than in water. In water, the wear coefficient K at 50$^{\circ}C$ and 80$^{\circ}C$ is 4.35${\times}$10$\^$-13/Pa$^1$ and 5.81${\times}$10$\^$-13/Pa$^1$ respectively, Therefore, it is found that the wear volume extremely increases by increasing on temperature in water. This study shows that the dissolved oxygen with temperature increment increases and the wear due to fluidity is severe.

  • PDF

Effects of 2-Chloro-3-( 4-cyanophenylamino )-1,4-naphthoquinone( NQ-Y15 ) on Normal and Ischemical/reperfused Rat Hearts (정상 및 허혈/재관류 흰쥐 심장에 대한 2-클로로-3-(4-시아노페닐아미노 )-1,4-나프토퀴논 ( NQ-Y15 )의 작용)

  • Moon, Chang-Hyun;Kim, Ji-Young;Baik, Eun-Joo;Lee, Soo-Hwan;Ryu, Chung-Kyu
    • YAKHAK HOEJI
    • /
    • v.41 no.6
    • /
    • pp.829-836
    • /
    • 1997
  • Studies on the effect of quinones on cardiac function has been conducted with normal hearts. But not with injured hearts, I.e. ischemia/reperfusion-injured heart. Quinone compounds are known to produce oxygen free radicals during metabolism, and for this reason, quinones are implicated in the aggravation of ischemia/reperfusion injury or cardioprotection, as in the case of ischemic preconditioning depending on the experimental conditions. The present study was carried out to examine the effect of 2-chloro-3-(4-cyanophenylamino)-1.4-naphthoquinone (NQ-Y15) on cardiac function of ischemic/reperfused and normal rat hearts. In isolated perfused hearts, various functional parameters such as left ventricular developed pressure (LVDP), left ventricular end-diastolic pressure (EDP) and maximum positive and negative dP/dt ($[\pm}dP/dt_{max}$), time to contracture, heart rate (HR) and coronary flow rate (CFR) were measured before and 30 min after dosing and following 25 min ischemia/30min reperfusion. NQ-Y15 increased LVDP, +dP/$d_{max}$and -dP/$dt_{min}$ by 18%. 30%, and 40%, respectively. There were no significant changes in other haemodynamic parameters. After ischemia/reperfusion injury, pretreatment with NQ-Y15 induced a significant decrease in LVDP and $[\pm}dP/dt_{max}$, but an increase in EDP. LDH-release was not significantly increased. These results suggested that NQ-Y15 may augment the ventricular contractility but it makes hearts more vulnerable to ischemia/reperfusion injury.

  • PDF

Relationships between arterial and urinary $P_CO_2}, P{O_2}$ and acid-base balances (동맥혈 및 뇨 $P_CO_2}, P{O_2}$ 의 산-염기 균형 및 뇨량과의 관계)

  • Kim, Yong-Jin;Lee, Yeong-Gyun
    • Journal of Chest Surgery
    • /
    • v.16 no.2
    • /
    • pp.213-220
    • /
    • 1983
  • Pulmonary function is the determinant of blood gas tension. However, Acid-Base disturbances can also alter partial pressures of oxygen and carbon dioxide in arterial blood. During respiratory acidosis $PO_2$ will be lowered and reverse changes will be produced during respiratory alkalosis. On the other hand, in metabolic acidosis $PO_2$ will be elevated and $PCO_2$ will be lowered by the respiratory compensation, and reverse response will be induced in metabolic alkalosis. Urinary gas tension has many influencing factors than arterial blood and difficult to estimate the tendency of its alterations. Urinary $PO_2$ and $PCO_2$ are not always identical level as venous blood. It is to be altered by blood gas tension, flow rate of urine, metabolic rate of kidney, and Acid-Base status of blood. Particularly countercurrent exchange of oxygen and carbon dioxide in the renal medulla will make larger alteration of gas tension than venous blood. After induction of Acid-Base disturbances [disturbances] arterial and urinary $PCO_2$, $PO_2$, urinary volume, and osmolarity were determined in dogs, and the relationships between arterial and urinary $PCO_2$ , $PO_2$ Acid-Base disturbances, urinary volume, and osmolarity were investigated. 1. During the acute Metabolic and Respiratory disturbances urinary pH did not respond on respiratory origin. However, there were immediate urinary response in pH on metabolic origin. 2. Urinary $PO_2$, $PCO_2$, did not always follow arterial or venous gas tension and Acid-Base disturbance. Urinary $PCO_2$, correlate well with the urinary volume. The larger the urinary volume, $PCO_2$ lowered to the venous level. The smaller the urinary volume, urinary $PCO_2$ tends to be higher. However urinary $PO_2$ did not have any particular correlation with urinary volume. 3. Correlation between urinary $PCO_2$ and $PO_2$ were inversely proportional to arterial blood. Differences of $PCO_2$ between arterial blood and urine also did not have any particular correlation with urinary volume. This may suggest that changes on blood gas tensions can influence on urinary $PCO_2$. 4. There were eminent clear inverse correlation between urinary $PCO_2$ and osmolar concentrations of urine. Above results strongly suggest that partial pressure of gas in urine primarily depend upon counter-current exchanges in renal medullary tissues.

  • PDF

Oxidation Behavior of the HVOF-sprayed $\textrm{Cr}_{3}\textrm{C}_{2}$-NiCr Coating Layer (HVOF 용사된 $\textrm{Cr}_{3}\textrm{C}_{2}$-NiCr 용사층의 산화 거동)

  • Kim, Byeong-Hui;Seo, Dong-Su
    • Korean Journal of Materials Research
    • /
    • v.8 no.8
    • /
    • pp.757-765
    • /
    • 1998
  • This study was performed to investigate the influence of fuel/oxygen ratio (F/O= 3.2, 3.0, 2.8) on the oxidation behavior of two kinds of (20wt%NiCr claded $\textrm{Cr}_{3}\textrm{C}_{2}$, and 7wt%NiCr mixed $\textrm{Cr}_{3}\textrm{C}_{2}$) composite powder with different manufacturing method. The results show that the oxidation behavior between the 20wt% NiCr claded $\textrm{Cr}_{3}\textrm{C}_{2}$ and 7wt% NiCr mixed $\textrm{Cr}_{3}\textrm{C}_{2}$ coating was widely different. The surface morphology of the coating composed of 7wt% NiCr mixed $\textrm{Cr}_{3}\textrm{C}_{2}$ was changed to porous with F/O ratio by the aggressive evolution of gas phases($\textrm{CO}_2$, CO and $\textrm{CrO}_3$) and the oxide cluster composed of Ni and Cr were grown after oxidation at $1000^{\circ}C$ for 50 hours. But the surface morphology of the coating composed of 20wt% NiCr claded $\textrm{Cr}_{3}\textrm{C}_{2}$ was not changed to porous after oxidation at $1000^{\circ}C$ for 50 hours. Therefore, the reason for high oxidation rate is due to activation of $\textrm{Cr}_{3}\textrm{C}_{2}$ to oxidation by entrapped oxygen gases within coating layer, and to closely relate with the decomposition of $\textrm{Cr}_{3}\textrm{C}_{2}$ to $\textrm{Cr}_{7}\textrm{C}_{3}$ phase. Accordingly, On the evidence of these results, the study about the oxidation behavoir of the HVOF sprayed $\textrm{Cr}_{3}\textrm{C}_{2}$ coating depending on hydrogen flow rate must be done.

  • PDF

Reducing the Test Time for Chemical/Mechanical Durability of Polymer Electrolyte Membrane Fuel Cells (고분자연료전지의 화학적/기계적 내구성 평가 시간 단축)

  • Sohyeong Oh;Donggeun Yoo;Kim Myeonghwan;Park Jiyong;Choi Yeongjin;Kwonpil Park
    • Korean Chemical Engineering Research
    • /
    • v.61 no.4
    • /
    • pp.517-522
    • /
    • 2023
  • A chemical/mechanical durability test of polymer membrane evaluation method is used in which air and hydrogen are supplied to the proton exchange membrane fuel cell (PEMFC) and wet/dry is repeated in the open circuit voltage (OCV) state. In this protocol, when wet/dry is repeated, voltage increase/decrease is repeated, resulting in electrode degradation. When the membrane durability is excellent, the number of voltage changes increases and the evaluation is terminated due to electrode degradation, which may cause a problem that the original purpose of membrane durability evaluation cannot be performed. In this study, the same protocol as the department of energy (DOE) was used, but oxygen was used instead of air as the cathode gas, and the wet/dry time and flow rate were also increased to increase the chemical/mechanical degradation rate of the membrane, thereby shortening the durability evaluation time of the membrane to improve these problems. The durability test of the Nafion 211 membrane electrode assembly (MEA) was completed after 2,300 cycles by increasing the acceleration by 2.6 times using oxygen instead of air. This protocol also accelerated degradation of the membrane and accelerated degradation of the electrode catalyst, which also had the advantage of simultaneously evaluating the durability of the membrane and the electrode.

Electrical and Optical Properties of the GZO Transparent Conducting Layer Prepared by Magnetron Sputtering Technique (마그네트론 스퍼터링법으로 제작된 GZO 투명전도막의 전기적 및 광학적 특성)

  • No, Im-Jun;Kim, Sung-Hyun;Shin, Paik-Kyun;Lee, Kyung-Il;Kim, Sun-Min;Cho, Jin-Woo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.4
    • /
    • pp.110-115
    • /
    • 2010
  • Transparent conducting gallium-doped zinc oxide (GZO) thin films which were deposited on Corning glass substrate using an Gun-type rf magnetron sputtering deposition technology. The GZO thin films were fabricated with an GZO ceramic target (Zn : 97[wt%], $Ga_2O_3$ : 3[wt%]). The GZO thin films were deposited by varying the growth conditions such as the substrate temperature, oxygen pressure. Among the GZO thin films fabricated in this study, the one formed at conditions of the substrate temperature of 200[$^{\circ}C$], Ar flow rate of 50[sccm], $O_2$ flow rate of 5[sccm], rf power of 80[W] and working pressure of 5[mtorr] showed the best properties of an electrical resistivity of $2.536{\times}10^{-4}[{\Omega}{\cdot}cm]$, a carrier concentration of $7.746{\times}10^{20}[cm^{-3}]$, and a carrier mobility of 31.77[$cm^2/V{\cdot}S$], which indicates that it could be used as a transparent electrode for thin film transistor and flat panel display applications.

A Study on the Flow Entrainment Characteristics of a Coaxial Nozzle Used in a MILD Combustor with the Change of Nozzle Position and Flow Condition (MILD 연소로에서 노즐의 위치와 유동 조건에 따른 유입량 특성에 관한 연구)

  • Shim, Sung-Hoon;Ha, Ji-Soo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.2
    • /
    • pp.103-108
    • /
    • 2012
  • A MILD (Moderate and Intense Low oxygen Dilution) combustor decreases NOx formation effectively during the combustion process and NOx formation is affected significantly by the exhaust gas entrainment rate toward fuel and air. The present study focused on the new MILD combustor, which has coaxial cylindrical tube. The outside tube of the new MILD combustor corresponds to the exhaust gas passage and the inner side tube is the furnace passage. The connection pipe is set between the outer side and the inner side tubes and coaxial air nozzle is inserted at the center of the connection pipe. A numerical analysis is accomplished to elucidate the characteristics of exhaust gas entrainment toward the inner furnace with the changes of air nozzle exit velocity, nozzle diameter, nozzle exit position and exhaust gas side pressure. The entrainment rate is proportional to the square root of air nozzle exit velocity and negatively proportional to the pressure difference between the exhaust gas side and furnace side pressures. The effect of air nozzle exit position is not considerable on the exhaust gas entrainment.

Integrated Eco-Engineering Design for Sustainable Management of Fecal Sludge and Domestic Wastewater

  • Koottatep, Thammarat;Polprasert, Chongrak;Laugesen, Carsten H.
    • Journal of Wetlands Research
    • /
    • v.9 no.1
    • /
    • pp.69-78
    • /
    • 2007
  • Constructed wetlands and other aquatic systems have been successfully used for waste and wastewater treatment in either temperate or tropical regions. To treat waste or wastewater in a sustainable manner, the integrated eco-engineering designs are explained in this paper with 2 case studies: (i) a combination of vertical-flow constructed wetland (CW) with plant irrigation systemfor fecal sludge management and (ii) integrated CW units with landscaping at full-scale application for domestic wastewater treatment. The pilot-scale study of fecal sludge management employed 3 vertical-flow CW units, each with a dimension of $5{\times}5{\times}0.65m$ (width ${\times}$ length ${\times}$ media depth) and planted with cattails (Typha augustifolia). At the solid loading rate of 250 kg total solids (TS)/$m^2.yr$ and a 6-day percolate impoundment, the CW system could achieve chemical oxygen demand (COD), TS and total Kjeldahl nitrogen (TKN) removal efficiencies in the range of 80 - 96%. The accumulated sludge layers of about 80 - 90 cm was found at the CW bed surface after operating the CW units for 7 years, but no clogging problem has been observed. The CW percolate was applied to 16 irrigation Sunflower plant (Helianthus annuus) plots, each with a dimension of $4.5{\times}4.5m$ ($width{\times}length$). In the study, the CW percolate were fed to the treatment plots at the application rate of 7.5 mm/day but the percolate was mixed with tap water at different ratio of 20%, 80% and 100%. Based on a 1-year data of 3-crop plantation were experimented, the contents of Zn, Mn and Cu in soil of the experimental plots were found to increase with increasing in CW percolate ratios. The highest plant biomass yield and oil content of 1,000 kg/ha and 35%, respectively, were obtained from the plots fed with 20% or 50% of the CW percolate, whereas no accumulation of heavy metals in the plant tissues (i.e. leaves, stems and flowers) of the sunflower is found. In addition to the pilot-scale and field experiments, a case study of the integrated CW systems for wastewater treatment at Phi Phi Island (a Tsunami-hit area), Krabi province, Thailand is illustrated. The $5,200-m^2$ CW systems on Phi Phi Island are not only for treatment of $400m^3/day$ wastewater from hotels, households or other domestic activities, but also incorporating public consultation in the design processes, resulting in introducing the aesthetic landscaping as well as reusing of the treated effluent for irrigating green areas on the Island.

  • PDF

Extracorporeal Membrane Oxygenation in Pediatric Patients with Respiratory Failure: Early Experience with the Double-Lumen Cannula Over 2 Years

  • Kim, Woojung;Kwon, Hye Won;Min, Jooncheol;Cho, Sungkyu;Kwak, Jae Gun;Kim, Woong Han
    • Journal of Chest Surgery
    • /
    • v.53 no.3
    • /
    • pp.132-139
    • /
    • 2020
  • Background: The double-lumen cannula (DLC) has begun to be used worldwide for venovenous (VV) extracorporeal membrane oxygenation (ECMO). We aimed to examine whether the DLC could be an effective tool in the treatment of pediatric respiratory failure in Korea. Methods: We reviewed the records of patients weighing under 15 kg who underwent ECMO due to respiratory failure between January 2017 and December 2018. Outcomes of ECMO using a DLC and conventional ECMO using central method or 2 peripheral cannulas were compared. Results: Twelve patients were treated with ECMO for respiratory failure. Among them, a DLC was used in 5 patients, the median age of whom was 3.8 months (interquartile range, 0.1-49.7 months). In these patients, the median values of pH, partial pressure of carbon dioxide, and partial pressure of oxygen were 7.09, 74 mm Hg, and 37 mm Hg before ECMO and corrected to 7.31, 44 mm Hg, and 85 mm Hg, respectively, after ECMO cannulation. Median blood flow rate in the patients treated with ECMO using a DLC was slightly higher than that in the conventional ECMO group, but this difference was not statistically significant (86.1 mL/kg/min and 74.3 mL/kg/min, respectively; p=1.00). One patient from the DLC group and 3 patients from the conventional group were weaned off ECMO. Conclusion: VV ECMO using a DLC provided adequate oxygenation, ventilation, and blood flow rate in Korean pediatric patients with respiratory failure. Further prospective and randomized studies are warranted.

The Effects of the Area of Openings on the Performance of a $CO_2$ Extinguishing System -The CFD Simulations of the Oil Surface Fire in a Machine Room- (개구부 면적이 $CO_2$ 소화설비의 소화성능에 미치는 영향 -기계실 석유 표면화재의 CFD simulations-)

  • Jeon, Heung-Kyun;Choi, Young-Sang;Park, Jong-Tack
    • Fire Science and Engineering
    • /
    • v.22 no.1
    • /
    • pp.1-9
    • /
    • 2008
  • Carbon dioxide($CO_2$) agent, which has more safely extinguished fire than any other gaseous fire extinguishing agents, has been widely used in various protected enclosures and types of fires. According to the concept of performance-based design(PBD). $CO_2$ extinguishing system to be designed is needed to be evaluated for the performance of fire suppression with possible fire scenarios in an enclosure. In this paper, CFD simulations were carried out to study the effects of opening area on the performance of $CO_2$ extinguishing system and the flow characteristics in the machine room of $100m^3$ in which kerosene spill fire happened. This study showed that time of fire suppression increased linearly in proportion to the size of opening area, and fires for each model were completely suppressed prior to the end of discharge of $CO_2$ agent. It was shown that mass flow rate through opening was influenced by the combined effects of heat release rate of fire and discharge of $CO_2$ agent. After $CO_2$ agent was completely discharged, oxygen concentrations in enclosures for each model were lower than the limit concentration of combustion.