DOI QR코드

DOI QR Code

Reducing the Test Time for Chemical/Mechanical Durability of Polymer Electrolyte Membrane Fuel Cells

고분자연료전지의 화학적/기계적 내구성 평가 시간 단축

  • 오소형 (순천대학교 화학공학과) ;
  • 유동근 (순천대학교 화학공학과) ;
  • 김명환 (친환경기술연구소, 한국자동차연구원) ;
  • 박지용 (친환경기술연구소, 한국자동차연구원) ;
  • 최영진 (친환경기술연구소, 한국자동차연구원) ;
  • 박권필 (순천대학교 화학공학과)
  • Received : 2023.05.22
  • Accepted : 2023.09.13
  • Published : 2023.11.01

Abstract

A chemical/mechanical durability test of polymer membrane evaluation method is used in which air and hydrogen are supplied to the proton exchange membrane fuel cell (PEMFC) and wet/dry is repeated in the open circuit voltage (OCV) state. In this protocol, when wet/dry is repeated, voltage increase/decrease is repeated, resulting in electrode degradation. When the membrane durability is excellent, the number of voltage changes increases and the evaluation is terminated due to electrode degradation, which may cause a problem that the original purpose of membrane durability evaluation cannot be performed. In this study, the same protocol as the department of energy (DOE) was used, but oxygen was used instead of air as the cathode gas, and the wet/dry time and flow rate were also increased to increase the chemical/mechanical degradation rate of the membrane, thereby shortening the durability evaluation time of the membrane to improve these problems. The durability test of the Nafion 211 membrane electrode assembly (MEA) was completed after 2,300 cycles by increasing the acceleration by 2.6 times using oxygen instead of air. This protocol also accelerated degradation of the membrane and accelerated degradation of the electrode catalyst, which also had the advantage of simultaneously evaluating the durability of the membrane and the electrode.

고분자전해질 연료전지 (PEMFC)에 공기와 수소를 공급하고 개회로전압 (OCV) 상태에서 가습/건조를 반복하는 고분자막의 화학적/기계적 내구성 평가법이 사용되고 있다. 이 프로토콜에서 가습/건조가 반복되면 전압 상승/감소가 반복되어 전극 열화도 발생한다. 막 내구성이 우수한 경우 전압 변화 횟수가 증가해, 전극 열화에 의해 평가가 종료되어 원래 목적인 막 내구성 평가를 할 수 없는 문제가 발생하기도 한다. 본 연구에서는 미국 에너지부 (DOE)와 동일한 프로토콜을 사용하되 cathode 가스로 공기대신 산소를 사용하고 가습/건조시간과 유량도 증가시켜 막의 화학적/기계적 열화 속도를 증가시켜서 고분자막 내구 평가 시간을 단축시킴으로서 이와 같은 문제를 개선하고자 하였다. Nafion 211 막전극접합체(MEA) 내구성 평가를 공기 대신 산소를 사용해서 가속화도를 2.6배 증가시켜 2,300 사이클만에 평가 종료하였다. 본 프로토콜에 의해 고분자막도 가속 열화되고, 전극 촉매도 가속 열화되어 고분자막과 전극의 내구성을 동시에 평가할 수 있는 이점도 있었다.

Keywords

Acknowledgement

본 연구는 2021년도 산업통상자원부 및 산업기술평가관리원(KEIT) 연구비 지원에 의한 연구입니다(20015756).

References

  1. Gittleman, C. S., Kongkanand, A., Masten, D., and Gu, W., "Materials Research and Development Focus Areas for Low Cost Automotive Proton-exchange Membrane Fuel Cells," Curr. Opin. Electrochem., 18, 81(2019). 
  2. Borup, R. L., Kusoglu, A., Neyerlin, K. C., Mukundan, R., Ahluwalia, R. K., Cullen, D. A., More, K. L., Weber, A. Z. and Myers, D. J., "Recent Developments in Catalyst-related PEM Fuel Cell Durability," Curr. Opin. Electrochem., 21, 192(2020). 
  3. Marcinkoski, J., Vijayagopal, R., Adams, J., James, B., Kopasz, J., and Ahluwalia, R.,Hydrogen Class 8 Long Haul Truck Targets. Subsection of the Electrified Powertrain Roadmap. Technical Targets for Hydrogen-Fueled Long-Haul Tractor-Trailer Trucks. https://hydrogen.energy.gov/pdfs/19006_hydrogen_class8_long_haul_truck_targets.pdf. 
  4. Wilson, M. S., Garzon, F. H., Sickafus, K. E. and Gottesfeld, S. "Surface Area Loss of Supported Platinum in Polymer Electrolyte Fuel Cells," J. Electrochem. Soc., 140(10), 2872-2877(1993).  https://doi.org/10.1149/1.2220925
  5. Knights, S. D., Colbow, K. M., St-Pierre, J. and Wilkinson, D. P., "Aging Mechanism and Lifetime of PEFC and DMFC," J. Power Sources, 127(1-2), 127-134(2004).  https://doi.org/10.1016/j.jpowsour.2003.09.033
  6. Luo, Z., Li, D., Tang, H., Pan, M. and Ruan, R., "Degradation Behavior of Membrane-electrode-assembly Materials in 10-cell PEMFC Stack," Int. J. Hydrogen Energy, 31(13), 1838-1854(2006).  https://doi.org/10.1016/j.ijhydene.2006.05.006
  7. Pozio, A., Silva, R. F., Francesco, M. D. and Giorgi, L., "Nafion Degradation in PEFCs from End Plate Iron Contamination," Electrochim. Acta, 48(11), 1543-1548(2003).  https://doi.org/10.1016/S0013-4686(03)00026-4
  8. Xie, J., Wood III, D. L., Wayne, D. N., Zawodinski, T. A., Atanassov, P. and Borup, R. L., "Durability of PEFCs at High Humidity Conditions," J. Electrochem. Soc., 152(1), A104-A113(2005).  https://doi.org/10.1149/1.1830355
  9. Curtin, D. E., Lousenberg, R. D., Henry, T. J., Tangeman, P. C. and Tisack, M. E., "Advanced Materials of Improved PEMFC Performance and Life," J. Power Sources, 131(1-2), 41-48(2004).  https://doi.org/10.1016/j.jpowsour.2004.01.023
  10. Wilkinson, D. P. and St-Pierre, J., in: W. Vielstich, H. A. Gasteiger. A. Lamm (Eds.). Handbook of Fuel Cell: Fundamentals Technology and Applications, Vol. 3, John Wiley & Sons Ltd., Chichester, England, 611-612(2003). 
  11. Collier, A., Wang, H., Yaun, X., Zhang, J. and Wilison, D. P., "Degradation of Polymer Electrolyte Membranes," Int. J. Hydrogen Energy, 31(13), 1838-1854(2006).  https://doi.org/10.1016/j.ijhydene.2006.05.006
  12. https://www1.eere.energy.gov/hydrogenandfuelcells/fuelcells/pdfs/component_durability_profile.pdf, "DOE Cell Component Accelerated Stress Test Protocols For Pem Fuel Cells." 
  13. Daido University, Ritsumeikian Univ., Tokyo Institute of Technology, Japan Automobile Research Ins., "Cell Evaluation and Analy-sis Protocol Guidline," NEDO, Development of PEFC Technologies for Commercial Promotion-PEFC Evaluation Project, January 30(2014). 
  14. Mukundan, R., "Fuel Cell - Performance and Durability FC139 - Modeling, Evaluation, Characterization," 2016 DOE Fuel Cell Technologies Office Annual Merit Review, June 8th(2016). 
  15. Mukundan, R., Baker, A. M., Kusoglu, A., Beattie, P., Knights, S., Weber, A. S. and Borup, R. L., "Membrane Accelerated Stress Test Development for Polymer Electrolyte Fuel Cell Durability Validated Using Field and Drive Cycle Testing," J. Electrochem. Soc., 165(6), F3085-F3093(2018).  https://doi.org/10.1149/2.0101806jes
  16. Lim, D. H., Oh, S. H., Jung, S. G., Jeong, J. H. and Park, K. P., "Durability Test of PEMFC Membrane by the Combination of Chemical/Mechanical degradation," Korean Chem. Eng. Res., 59(1), 16-20(2021). 
  17. Mench, M. M., Emin, C. K. and Veziroglu, T. N., Polymer Electrolyte Fuel Cell Degradation, Academic Press, Oxford, Waltham, MA, 64-77(2012). 
  18. Lee, H., Kim, T. H., Sim, W. J., Kim, S. H., Ahn, B. K., Lim, T. W. and Park, K. P., "Pinhole Formation in PEMFC Membrane After Electrochemical Degradation and Wet/dry Cycling Test," Korean J. Chem. Eng., 28(2), 487-491(2011). https://doi.org/10.1007/s11814-010-0381-6