• 제목/요약/키워드: Oxygen evolution

검색결과 262건 처리시간 0.033초

알칼리용액에서 La0.8Sr0.2MnO3 페롭스카이트 촉매의 산소환원 및 발생반응에서 도전재의 영향 (Effect of Conductive Additives in La0.8Sr0.2MnO3 Perovskite Electrodes for Oxygen Reduction and Evolution in Alkaline Solution)

  • 심중표;로페즈 카린;양진현;선호정;박경세;엄승욱;이홍기
    • 한국수소및신에너지학회논문집
    • /
    • 제27권3호
    • /
    • pp.276-282
    • /
    • 2016
  • The effects of conductive additives in a $La_{0.8}Sr_{0.2}MnO_3$ perovskite bifunctional electrode for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) were investigated in an alkaline solution. Highly porous carbon black (CB) and Ni powder were added to the bifunctional electrodes as conductive additives. The surface morphologies of electrodes containing CB and Ni were observed by scanning electron microscopy (SEM). The current densities for both ORR and OER were changed by the addition of CB. The conductive additive changed physical properties of bifunctional electrodes such as the sheet conductance, gas permeability and contact angle. It was observed that the air permeability of electrode was most effective to enhance the currents for ORR and OER.

과량의 니켈 첨가로 합성된 NiO와 Co3O4가 도핑된 La(CoNi)O3 페로브스 카이트의 알칼리용액에서 산소환원 및 발생반응 특성 (Characterization of NiO and Co3O4-Doped La(CoNi)O3 Perovskite Catalysts Synthesized from Excess Ni for Oxygen Reduction and Evolution Reaction in Alkaline Solution)

  • 버링;임형렬;이홍기;박경세;심중표
    • 한국수소및신에너지학회논문집
    • /
    • 제32권1호
    • /
    • pp.41-52
    • /
    • 2021
  • NiO and Co3O4-doped porous La(CoNi)O3 perovskite oxides were prepared from excess Ni addition by a hydrothermal method using porous silica template, and characterized as bifunctional catalysts for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) for Zn-air rechargeable batteries in alkaline solution. Excess Ni induced to form NiO and Co3O4 in La(CoNi)O3 particles. The NiO and Co3O4-doped porous La(CoNi)O3 showed high specific surface area, up to nine times of conventionally synthesized perovskite oxide, and abundant pore volume with similar structure. Extra added Ni was partially substituted for Co as B site of ABO3 perovskite structure and formed to NiO and Co3O4 which was highly dispersed in particles. Excess Ni in La(CoNi)O3 catalysts increased OER performance (259 mA/㎠ at 2.4 V) in alkaline solution, although the activities (211 mA/㎠ at 0.5 V) for ORR were not changed with the content of excess Ni. La(CoNi)O3 with excess Ni showed very stable cyclability and low capacity fading rate (0.38 & 0.07 ㎶/hour for ORR & OER) until 300 hours (~70 cycles) but more excess content of Ni in La(CoNi)O3 gave negative effect to cyclability.

Effect of Cobalt Loading on the Performance and Stability of Oxygen Reduction and Evolution Reactions in Rechargeable Zinc-air Batteries

  • Sheraz Ahmed;Joongpyo Shim;Gyungse Park
    • 대한화학회지
    • /
    • 제68권2호
    • /
    • pp.87-92
    • /
    • 2024
  • The commercialization of rechargeable metal-air batteries is extremely desirable but designing stable oxygen reduction reaction (ORR) catalysts with non-noble metal still has faced challenges to replace platinum-based catalysts. The nonnoble metal catalysts for ORR were prepared to improve the catalytic performance and stability by the thermal decomposition of ZIF-8 with optimum cobalt loading. The porous carbon was obtained by the calcination of ZIF-8 and different loading amounts of Co nanoparticles were anchored onto porous carbon forming a Co/PC catalyst. Co/PC composite shows a significant increase in the ORR value of current and stability (500 h) due to the good electronic conductive PCN support and optimum cobalt metal loading. The significantly improved catalytic performance is ascribed to the chemical structure, synergistic effects, porous carbon networks, and rich active sites. This method develops a new pathway for a highly active and advantageous catalyst for electrochemical devices.

계면 제어를 통한 수전해 전기화학 촉매 개발 동향 (Research Trend in the Development of Electrocatalysts for Water Electrolysis via Interfacial Engineering)

  • 김민희;이성규
    • 접착 및 계면
    • /
    • 제25권2호
    • /
    • pp.50-55
    • /
    • 2024
  • 수소는 높은 에너지 밀도와 환경친화적이고 재생가능한 에너지원으로써 많은 주목을 받고 있다. 특히 다양한 수소 생산 방식 중 수전해는 탄소 배출이 없는 청정 수소 생산 방식으로 미래 수소 생산을 이끌어나갈 기술이며, 이를 구현하기 위하여 많은 연구들이 진행 중이다. 하지만 높은 과전압으로 인한 수소 생산 단가 상승이 걸림돌로 작용하고 있어 이를 해결할 수 있는 전기화학 촉매 개발이 매우 중요하다. 본 논문에서는 계면 제어를 통한 수소 발생 반응 및 산소 발생 반응 전기화학 촉매 개발 분야의 최근 연구 동향을 요약 및 소개하고, 차세대 수전해 장치를 구현하기 위한 과제에 대해 깊이 논의하고자 한다.

Structural Evolution of Layered $Li_{1.2}Ni_{0.2}Mn_{0.6}O_2$ upon Electrochemical Cycling in a Li Rechargeable Battery

  • 홍지현;서동화;김성욱;권혁조;박영욱;강기석
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2010년도 춘계학술발표대회
    • /
    • pp.37.2-37.2
    • /
    • 2010
  • Recently $Li_{1.2}Ni_{0.2}Mn_{0.6}O_2$ has been consistently examined and investigated by scientists because of its high lithium storage capacity, which exceeds beyond the conventional theoretical capacity based on conventional chemical concepts. Consequently, $Li_{1.2}Ni_{0.2}Mn_{0.6}O_2$ is considered as one of the most promising cathode candidates for next generation in Li rechargeable batteries. Yet the mechanism and the origin of the overcapacity have not been clarified. Previously, many authors have demonstrated simultaneous oxygen evolution during the first delithiation. However, it may only explain the high capacity of the first charge process, and not of the subsequent cycles. In this work, we report a clarified interpretation of the structural evolution of $Li_{1.2}Ni_{0.2}Mn_{0.6}O_2$, which is the key element in understanding its anomalously high capacity. We identify how the structural evolution of $Li_{1.2}Ni_{0.2}Mn_{0.6}O_2$ occurs upon the electrochemical cycling through careful study of electrochemical profiles, ex-situ X-ray diffraction (XRD), HR-TEM, Raman spectroscopy, and first principles calculation. Moreover, we successfully separated the structural change at subsequent cycles (mainly cation rearrangement) from the first charge process (mainly oxygen evolution with Li extraction) by intentionally synthesizing sample with large particle size. Consequently, the intermediate states of structural evolution could be well resolved. All observations made through various tools lead to the result that spinel-like cation arrangement and lithium environment are created and embedded in layered framework during repeated electrochemical cycling.

  • PDF

Hydrogen photoproduction by the synchronously grown marine unicellular cyanobacterium Synechococcus sp. Miami BG 043511 under extremely high oxygen concentration

  • Yih, Won-Ho;Takeyama, Haruko;Mitsui, Akira
    • Journal of the korean society of oceanography
    • /
    • 제31권1호
    • /
    • pp.18-22
    • /
    • 1996
  • The effect of exogenous oxygen on hydrogen photoproduction was examined in the synchronously grown cells of marine Synechococcus sp. Miami BG 043511 under conditions of high cell density (0.6-0.8 mg chl-${\alpha}$ $ml^{-1}$) and high light intensity (1000 ${\mu}$E $m^{-2}$ $s^{-1}$). Hydrogen evolution after 20-h incubation did not decline under the initial oxygen concentrations up to 20%, but declined by half under 34% oxygen. 50% and 100% oxygen gas phase did not completely inhibit the hydrogen photoproduction during 40-h incubations. After 2-day pretreatment under 100% exogenous oxygen the hydrogen photoproduction capabilities were not irreversibly inhibited, which was demonstrated in the subsequent 9-day incubation under initial 0, 50 and even under 100% oxygen gas phase. This strain could be useful for developing a hydrogen photoproduction system under atmospheric oxygen concentration.

  • PDF

Electrochemical Oxygen Evolution Reaction on NixFe3-xO4 (0 ≤ x ≤ 1.0) in Alkaline Medium at 25℃

  • Pankaj, Chauhan;Basant, Lal
    • Journal of Electrochemical Science and Technology
    • /
    • 제13권4호
    • /
    • pp.497-503
    • /
    • 2022
  • Spinel ferrites (NixFe3-xO4; x = 0.25, 0.5, 0.75 and 1.0) have been prepared at 550℃ by egg white auto-combustion route using egg white at 550℃ and characterized by physicochemical (TGA, IR, XRD, and SEM) and electrochemical (CV and Tafel polarization) techniques. The presence of characteristic vibration peaks in FT-IR and reflection planes in XRD spectra confirmed the formation of spinel ferrites. The prepared oxides were transformed into oxide film on glassy carbon electrodes by coating oxide powder ink using the nafion solution and investigated their electrocatalytic performance for OER in an alkaline solution. The cyclic voltammograms of the oxide electrode did not show any redox peaks in oxygen overpotential regions. The iR-free Tafel polarization curves exhibited two Tafel slopes (b1 = 59-90 mV decade-1 and b2 = 92-124 mV decade-1) in lower and higher over potential regions, respectively. Ni-substitution in oxide matrix significantly improved the electrocatalytic activity for oxygen evolution reaction. Based on the current density for OER, the 0.75 mol Ni-substituted oxide electrode was found to be the most active electrode among the prepared oxides and showed the highest value of apparent current density (~9 mA cm-2 at 0.85 V) and lowest Tafel slope (59 mV decade-1). The OER on oxide electrodes occurred via the formation of chemisorbed intermediate on the active sites of the oxide electrode and follow the second-order mechanism.

Oxidative stress on anaerobes

  • Takeuchi, Toru;Shi, Minyi;Kato, Naoki;Watanabe, Kunitomo;Morimoto, Kanehisa
    • Journal of Photoscience
    • /
    • 제9권2호
    • /
    • pp.142-145
    • /
    • 2002
  • A strict anaerobe, Prevotella melaninogenica is highly sensitive to oxidative stress. Oxidative stress such as exposure to oxygen or addition of hydrogen peroxide, increased 8-hydroxydeoxyguanosine (80HdG), a typical of oxidative DNA damage, and decreased the bacterial cell survival rate. We could detect the generation of reactive oxygen species in P. melaninogenica after exposure to oxygen. UVA irradiation also increased 80HdG in the bacterium. On the other hand, such oxidative stress did not increase 80HdG in a facultative anaerobe. These findings suggest that P. melaninogenica is a suitable material to study the biological effects of oxidative stress, to evaluate antioxidants, and to study the effects of oxygen or reactive oxygen species on molecular evolution.

  • PDF

해수 기반 전기화학소자의 안정적인 전극을 위한 내염소층 설계 (Design of Chlorine-resistant layer for stable electrode in seawater-based electrochemical devices)

  • 김수연;;김채언;장예원;한유리
    • 한국표면공학회지
    • /
    • 제57권4호
    • /
    • pp.325-330
    • /
    • 2024
  • When seawater is used in electrochemical devices, issues arise such as the adsorption of chloride ions blocking the active sites for Oxygen reduction reactions (ORR) in seawater batteries, and the occurrence of Chlorine evolution reactions (ClER) in seawater electrolysis due to chloride anions (Cl-) competing with OH- for catalytic active sites, potentially slowing down Oxygen evolution reactions (OER). Consequently, the performance of components used in seawater battery and seawater electrolysis may deteriorate. Therefore, conventional alloys are often used by coating or plating methods to minimize corrosion, albeit at the cost of reducing electrical conductivity. This study thus designed a corrosion-resistant layer by doping carbon with Nitrogen (N) and Sulfur (S) to maintain electrical conductivity while preventing corrosion. Optimal N,S doping ratios were developed, with corrosion experiments confirming that N,S (10:90) carbon exhibited the best corrosion resistance performance.

열처리된 친수성 카본 페이퍼 전극의 전기 물 분해 특성 (Electrode Properties for Water Electrolysis of Hydrophilic Carbon Paper with Thermal Anneal)

  • 유일한;서형탁
    • 한국재료학회지
    • /
    • 제26권5호
    • /
    • pp.241-245
    • /
    • 2016
  • Hydrogen is considered a potential future energy source. Among other applications of hydrogen, hydrogen-rich water is emerging as a new health care product in industrial areas. Water electrolysis is typically used to generate a hydrogen rich water system. We annealed 10AA carbon paper in air to use it as an electrode of a hydrogen rich water generator. Driven by annealing, structural changes of the carbon paper were identified by secondary electron microscope analysis. Depending on the various annealing temperatures, changes of the hydrophilic characteristics were demonstrated. The crystal structures of pristine and heat-treated carbon paper were characterized by X-ray diffraction. Improvement of the efficiency of the electrochemical oxygen evolution reaction was measured via linear voltammetry. The optimized annealing temperature of 10AA carbon paper showed the possibility of using this material as an effective hydrogen rich water generator.