DOI QR코드

DOI QR Code

Design of Chlorine-resistant layer for stable electrode in seawater-based electrochemical devices

해수 기반 전기화학소자의 안정적인 전극을 위한 내염소층 설계

  • Suyeon Kim (Department of Materials Science and Engineering, Pusan National University) ;
  • Aye Myint Myat Kyaw (Department of Materials Science and Engineering, Pusan National University) ;
  • Chaeun Kim (Department of Materials Science and Engineering, Pusan National University) ;
  • Yewon Jang (Department of Materials Science and Engineering, Pusan National University) ;
  • Youri Han (Department of Materials Science and Engineering, Pusan National University) ;
  • Li Oi Lun (Department of Materials Science and Engineering, Pusan National University)
  • 김수연 (부산대학교 재료공학부) ;
  • ;
  • 김채언 (부산대학교 재료공학부) ;
  • 장예원 (부산대학교 재료공학부) ;
  • 한유리 (부산대학교 재료공학부) ;
  • Received : 2024.07.23
  • Accepted : 2024.08.05
  • Published : 2024.08.31

Abstract

When seawater is used in electrochemical devices, issues arise such as the adsorption of chloride ions blocking the active sites for Oxygen reduction reactions (ORR) in seawater batteries, and the occurrence of Chlorine evolution reactions (ClER) in seawater electrolysis due to chloride anions (Cl-) competing with OH- for catalytic active sites, potentially slowing down Oxygen evolution reactions (OER). Consequently, the performance of components used in seawater battery and seawater electrolysis may deteriorate. Therefore, conventional alloys are often used by coating or plating methods to minimize corrosion, albeit at the cost of reducing electrical conductivity. This study thus designed a corrosion-resistant layer by doping carbon with Nitrogen (N) and Sulfur (S) to maintain electrical conductivity while preventing corrosion. Optimal N,S doping ratios were developed, with corrosion experiments confirming that N,S (10:90) carbon exhibited the best corrosion resistance performance.

Keywords

Acknowledgement

이 논문(또는 저서, 특허)은(는) 정부(과학기술정보통신부)의 재원으로 과학기술사업화진흥원의 지원을 받아 수행된 연구임('학연협력플랫폼구축 시범사업' RS-2023-00304764).

References

  1. Y.S. Park, J. Lee, M.J. Jang, J. Yang, J. Jeong, J. Park, Y. Kim, M.H. Seo, Z. Chen, S.M. Choi, High-performance anion exchange membrane alkaline seawater electrolysis, Journal of materials chemistry A, 9 (2021) 9586-9592. https://doi.org/10.1039/D0TA12336F
  2. X. Zhu, C. Hu, R. Amal, L. Dai, X. Lu, Heteroatom-doped carbon catalysts for zinc-air batteries: progress, mechanism, and opportunities, Energy & environmental science, 13 (2020) 4536-4563. https://doi.org/10.1039/D0EE02800B
  3. H.S. Yang, M.W. Park, K.H. Kim, O.L. Li, T.I. Jeon, J. Kang, Facile in situ synthesis of dual-heteroatom-doped high-rate capability carbon anode for rechargeable seawater-batteries, Carbon, 189 (2022) 251-264. https://doi.org/10.1016/j.carbon.2021.12.066
  4. H. Son, S. Kim, J.H. Lee, O.L. Li, Dye-synthesized N, S co-doped carbon via plasma engineering as metal-free oxygen reduction reaction electrocatalysts, Journal of physics D: applied physics, 55 (2022) 074001.
  5. M. Jing, Z. Chen, Z. Li, F. Li, M. Chen, M. Zhou, B. He, L. Chen, Z. Hou, X. Chen, Facile synthesis of ZnS/N, S co-doped carbon composite from zinc metal complex for high-performance sodium-ion batteries, ACS applied materials & interfaces, 10 (2018) 704-712. https://doi.org/10.1021/acsami.7b15659
  6. J. Yang, X. Zhou, D. Wu, X. Zhao, Z. Zhou, S-doped N-rich carbon nanosheets with expanded interlayer distance as anode materials for sodium-ion batteries, Advanced materials, 29 (2017) 1606892.
  7. J. Ye, H. Zhao, W. Song, N. Wang, M. Kang, Z. Li, Enhanced electronic conductivity and sodium-ion adsorption in N/S co-doped ordered mesoporous carbon for high-performance sodium-ion battery anode, Journal of power sources, 412 (2019) 606-614.
  8. X. Liu, H. Shen, P. Chen, S. Liu, Preparation of a carbon-based solid acid catalyst by sulfonating activated carbon in a chemical reduction process, Molecules, 15 (2010) 7188-7196. https://doi.org/10.3390/molecules15107188
  9. C. Chokradjaroen, X. Wang, J. Niu, T. Fan, N. Saito, Fundamentals of solution plasma for advanced materials synthesis, Materials today advances, 14 (2022) 100244.
  10. H.O.L. Li, H. Lee, T. Ishizaki, Recent progress in solution plasma-synthesized carbon-supported catalysts for energy conversion systems, Japanese journal of applied physics, 57 (2018) 0102A2.
  11. X.L. Zhang, Zh.H. Jiang, Zh.P. Yao, Y. Song, Zh.D. Wu, Effects of scan rate on the potentiodynamic polarization curve obtained to determine the Tafel slopes and corrosion current density, Corrosion science, 51 (2009) 581-588. https://doi.org/10.1016/j.corsci.2008.12.005