• Title/Summary/Keyword: Oxygen electrode system

Search Result 109, Processing Time 0.022 seconds

Development of a Flow Injection Analysis Technique for On-line Monitoring of Xylitol Concentrations (자일리톨 농도의 온라인 모니터링을 위한 흐름주입분석기술 개발)

  • 이종일
    • KSBB Journal
    • /
    • v.17 no.4
    • /
    • pp.339-344
    • /
    • 2002
  • Flow injection analysis technique for monitoring of xylitol concentrations in biological processes has been developed using xylitol oxidase (XYO) immobilized on VA-Epoxy Biosynth carrier. The immobilized XYO cartridge has been integrated into a FIA system with an oxygen electrode and systematically investigated with regards to the factors which can affect the activity of the immobilized XYO, such as pH, temperature, salt concentration etc. The activity of the immobilized XYO increased with the temperature ($19.0 - 29.0^{circ}C$) and sample injection volume ($75-250\muL$) and molarity of potassium phosphate buffer (0.1-1 M), but it reached the highest value at pH 8.5. The XYO-FIA system has been also applied for on-line monitoring of xylitol concentrations in a reactor and showed good operational stability and agreement with off-line data measured with HPLC.

Determination of Microbial Growth by Protein Assay in an Air-Cathode Single Chamber Microbial Fuel Cell

  • Li, Na;Kakarla, Ramesh;Moon, Jung Mi;Min, Booki
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.7
    • /
    • pp.1114-1118
    • /
    • 2015
  • Microbial fuel cells (MFCs) have gathered attention as a novel bioenergy technology to simultaneously treat wastewater with less sludge production than the conventional activated sludge system. In two different operations of the MFC and aerobic process, microbial growth was determined by the protein assay method and their biomass yields using real wastewater were compared. The biomass yield on the anode electrode of the MFC was 0.02 g-COD-cell/gCOD-substrate and the anolyte planktonic biomass was 0.14 g-COD-cell/g-COD-substrate. An MFC without anode electrode resulted in the biomass yield of 0.07 ± 0.03 g-COD-cell/g-CODsubstrate, suggesting that oxygen diffusion from the cathode possibly supported the microbial growth. In a comparative test, the biomass yield under aerobic environment was 0.46 ± 0.07 g-COD-cell/g-COD-substrate, which was about 3 times higher than the total biomass value in the MFC operation.

Hydrogen Impurities Analysis From Proton Exchange Membrane Hydrogen Production (양자교환막을 이용하여 생산된 수소의 불순물 분석)

  • Lee, Taeckhong;Kim, Taewan;Park, Taesung;Choi, Woonsun;Kim, Hongyoul;Lee, Hongki
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.4
    • /
    • pp.288-294
    • /
    • 2013
  • This gas analysis data come from the hydrogen which is produced by proton exchange membrane. Main impurities of hydrogen are methane, oxygen, nitrogen, carbon monoxide, and carbon dioxide. The concentration of impurities is ranged between 0.0191 to $315{\mu}mol/mol$ for each impurity. Methane contamination is believed from the electrode reaction between carbon doped electrode and produced hydrogen. Nitrogen contamination should take place the sampling process error, not from PEM hydrogen Production system.

Electrical Properties of PZT Thin Films Deposited on the Ru/$RuO_2$ Metal/Oxide Hybrid Electrodes (Ru/$RuO_2$ 금속/산화물 이중전극 위에 증착한 PZT 박막의 전기적 특성)

  • Jeong, Kyu-Won;Park, Young;Song, Joon-Tae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.4
    • /
    • pp.281-288
    • /
    • 2001
  • PZT thin films (3500$\AA$) have been prepard on the Ru/Ru $O_2$ and Ru $O_2$ bottom electrodes with a RF magnetron sputtering system using P $b_{1.05}$(Z $r_{0.52}$, $Ti_{0.48}$) $O_3$ ceramic target. Ru/Ru $O_2$ bottom electrode was fabricated by in-situ processing controlled the $O_2$ partial pressure. The PZT thin films deposited on the Ru/Ru $O_2$ bottom electrode were preferred oriented (101) plane. The PZT thin films deposited on the Ru/Ru $O_2$ bottom electrodes showed better electrical properties than those with Ru $O_2$ bottom electrodes because Ru $O_2$ prevented oxygen vacancies and impurities from existing withing the interface and substrate.e.

  • PDF

Development of a Welding Machine System Using Brown Gas by Improved Water Electrolyzation

  • Lee Yong-Kyun;Lee Sang-yong;Jeong Byung-Hwan;Mok Hyung-Soo;Choe Gyu-Ha
    • Journal of Power Electronics
    • /
    • v.5 no.4
    • /
    • pp.305-311
    • /
    • 2005
  • Throughout the world, studies on the water energization are currently under way. Of those, Brown gas, which is generated through the electrolyzation of water and is a mixed gas of the constant volume of 2 parts hydrogen to 1 part oxygen, has better characteristics in terms of economy, energy efficiency, and environmental affinity than those of acetylene gas and LPG (Liquefied Petroleum Gas) used for existing welding machines. This paper analyzes the characteristics of Brown gas and presents methods for increasing the generating efficiency of Brown gas by designing a power supply to deliver power to a water-electrolytic cell and designing a cylindrical electrode to improve the efficiency of the electrolyzer needed for water electrolyzation. Based on the above the methods, a welding machine using Brown gas is developed. And the generation efficiency of Brown gas is measured tinder different conditions (duty ratio, frequency and amplitude) of supplied power.

Sterilization of Seawater for the Ballast Water Management System (선박평형수 관리시스템을 위한 해수 살균법)

  • YUN, YONGSUP;CHOI, JONGBEOM;KANG, JUN;LEE, MYEONGHOON
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.172-172
    • /
    • 2016
  • The International Maritime Organization(IMO) adopted the International Convention for the Control and Management of Ships' Ballast Water and Sediments in 2004 to prevent the transfer of aquatic organisms via ballast water. Forty ballast water treatment systems were granted final approval. A variety of techniques have been developed for ballast water treatment including UV treatment, indirect or direct electrolysis, ozone treatment, chemical compounds and plasma-arc method. In particular, using plasma and ozone nano-bubble treatments have been attracted in the fields. However, these treatment systems have a problem such as remained toxic substance, demand for high power source, low efficiency, ets. In this paper, we present our strilization results obtained from membrane type electrolytic-reduction treatment system The core of an electrolysis unit is an electrochemical cell, which is filled with pure water and has two electrodes connected with an external power supply. At a certain voltage, which is called critical voltage, between both electrodes, the electrodes start to produce hydrogen gas at the negatively biased electrode and oxygen gas at the positively biased electrode. The amount of gases produced per unit time is directly related to the current that passes through the electrochemical cell. From the results, we could confirm the sterilization effect of bacteria such as S. aureus, E. Coli and demonstrate the mechanism of sterilization phenomena by electrolytic-reduction treatment system.

  • PDF

A Study on the ICCP Control and Monitoring System for Ship (선박용 ICCP 제어 감시 시스템에 관한 연구)

  • 이지영;오진석
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.4
    • /
    • pp.667-674
    • /
    • 2004
  • This thesis is about the Impressed Current Cathodic Protection (ICCP) control and monitoring system. which brings protection against the corrosion of the ship's hull in the sea environments. The ICCP system is composed of a power supply. anode. reference electrode and controller. AC sources from the ship's generator are converted to DC sources in terms of power supply, and a protection current is sent to ship's hull though anode. The controller fully senses whether or not the detected potential is within a range of protection of ship's hull and then it is automatically controlled to increase or decrease the amount of protective current to be sent to the anode. The monitoring system with RS 232/485 communication is also studied in order to check the normal state of the system at a long period. because an operator does not always watch over this system and thus the system cannot operate well because of his or her negligent management. Since the vessel always navigates in the sea. an characteristics experiment of the ICCP system is conducted by introducing various corrosive environmental factors such as velocity, resistivity, dissolved oxygen, PH, temperature and contamination degree. These results must be referred to when the ICCP system is set up. In short. the ICCP is a multi-system for use on ships and on land structures because it includes a safety device. It is suggested that this system can accomodate a ship's automation and will be very useful.

A Comparison of the Discharged Products in Environmentally Benign Li-O2 and Na-O2 Batteries (친환경의 리튬 - 공기전지와 소듐 - 공기전지의 방전 생성물 비교 분석 연구)

  • Kang, Jungwon
    • Resources Recycling
    • /
    • v.25 no.3
    • /
    • pp.82-87
    • /
    • 2016
  • The discharged products of Li-$O_2$ and Na-$O_2$ batteries using ether-based electrolyte as next-generation battery system were analyzed. The morphology of the discharged products showed millet-like shape in the both battery systems by FESEM. However, the discharged product, $Li_2O_2$ showed amorphous-like form in the Li-$O_2$ cell while crystalline $NaO_2$ is formed in the Na-$O_2$ cell when confirmed by X-ray diffraction. In this work, we comprehended a principle operating mechanism of Li-$O_2$ and Na-$O_2$ battery.

A Characteristic Analysis of Ozone Generator Using the Al2O3 Ceramic Dielectric According to Gas Type(O2/Air) (Al2O3 유전체를 이용한 산소/공기 원료에 따른 오존발생기의 특성)

  • Park, Hyun-Mi;Song, Hyun-Jig;Park, Won-Joo;Lee, Kwang-Sik
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.5
    • /
    • pp.76-81
    • /
    • 2014
  • The ozone generation is commonly made with silent discharge method using quartz glass dielectric. In this paper, using $Al_2O_3$ dielectric to instead of the traditional quartz glass dielectric to improve the system efficiency is presented. The dielectric was manufactured as tube shape (Internal diameter${\times}$ Outside diameter: $11{\times}15mm$) using 99% $Al_2O_3$ ceramic. The characteristics of dielectric discharge and ozone generation were studied of experiments with variation of discharge power, discharge electrode space and rate of flow for supplied gas ($O_2$/Air). As the experimental results, in the same discharge space, the ozone concentration continuously increased with input power increasing, and ozone yield increased until saturation happened. Also, the expended power increased with discharge space extended due to discharge power increased. In additional, the ozone concentration of oxygen ozone was higher than air that was observed when using oxygen ozone in proposed experiments.

Study of Polysulfone Membrane for Membrane-covered Oxygen Probe System (산소 전극 시스템에 사용되는 polysulfone막에 대한 연구)

  • Hong, Suk In;Kim, Hyun Joon;Park, Hee Young;Kim, Tae Jin;Jeong, Yong Seob
    • Applied Chemistry for Engineering
    • /
    • v.7 no.5
    • /
    • pp.877-887
    • /
    • 1996
  • The ideal membranes for membrane-covered oxygen probes system should be selectively permeable for oxygen and chemically inert, and have good mechanical strength. Polysulfone(PSf) was selected to develop the membrane for membrane-covered oxygen electrodes system. PSf membranes have properties such as good reproducibility, good mechanical strength, chemical inertness, and high heat resistance. PSf membranes were cast from polymer solution on the glass plate at constant temperature, and casting solvents used were tetrahydrofuran(THF), methylene chloride, and N-methyl-2-pyrrolidone(NMP). Tricresyl phosphate(TCP) as plasicizer was added to PSf to increase the softness of membrane. The permeation characteristics were observed for pure oxygen and nitrogen through pure PSf membranes by variable volume method and membrane-covered electrode system. The permeability coefficients of oxygen and nitrogen measured by variable volume method were slightly decreased with increasing of upstream pressure. The permeation properties of PSf membrane using methylene choride as casting solvent were not affected by the PSf amount of polymer solution. The permeability coefficients of oxygen and nitrogen for PSf membrane containing TCP were very slightly lower than those for pure PSf membrane, but ideal separation factors were slightly higher. The flexibility of PSf membrane containing 2wt% TCP was better than that of pure PSf membrane. It was expected that this increase in flexibility would solve the difficulty of fixing the membrane to the cathode. The membrane-covered oxygen probes system was composed of anode, cathode and electrolyte. The type of the anode was Ag/AgCl half-cell, that of cathode was Ag, and the electrolyte was 4N KCl solution. The result of sampled current voltametry for PSf membrane showed the plateu region at -0.3V~-1.0V. The correlation coefficient of oxygen partial pressure versus current for PSf membrane was relatively high, 0.99949. It was concluded that PSf membrane was the good candidate for the membrane-covered oxygen probes system.

  • PDF