• Title/Summary/Keyword: Oxide characteristic

Search Result 468, Processing Time 0.024 seconds

The Surface Property and Shear Bonding Strength according to Composition of Ni-Cr alloy for Porcelain Fused to Metal Crown (도재용착주조관용 Ni-Cr계 합금의 조성에 따른 표면특성 및 전단결합강도 관찰)

  • Kim, Kap-Jin;Chung, In-Sung;Choi, Sung-Min
    • Journal of Technologic Dentistry
    • /
    • v.35 no.2
    • /
    • pp.113-120
    • /
    • 2013
  • Purpose: This study was to observe surface property and bonding strength according to composition of Ni-Cr alloy for porcelain fused to metal crown. The two kinds of Ni-Cr alloy with different composition ratio of parent metal were observed general properties and chemical properties of each alloy surface and measured the shear bonding strength between ceramic and each alloys. The aim of study was to suggest the material for design of parent metal's composition ratio to development of alloy for porcelain fused to metal crown. Methods: The two kinds of alloy as test specimen was Ni(71wt.%)-Cr(12wt.%) and Ni(63wt.%)-Cr(23wt.%) alloy. The oxide on surface was observed by SEM and EDX. And the shear test was performed by MTS. Results: The surface property and oxide characteristic analysis of oxide layer, weight percentage of Element O within $Ni_{71}Cr_{12}$ alloy measured 12.74wt.%, but $Ni_{63}Cr_{23}$ alloy was measured 15.91wt.%. And the maximum shear bonding strength was measured 106.14MPa between $Ni_{71}Cr_{12}$ alloy and vintage halo (VV group). Conclusion: The surface property and oxide characteristic of $Ni_{71}Cr_{12}$ alloy was similar to $Ni_{63}Cr_{23}$ alloy. And VV group has the strongest shear bonding strength.

The Estimation of the Extent of Weathering using Fractal Dimension through a Comparison with Chemical Characteristic (화학적 특성과의 비교 분석을 통한 프랙탈 차원을 이용한 풍화도 추정)

  • Noh, Soo-Kack;Son, Young-Hwan;Bong, Tae-Ho;Park, Jae-Sung
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.2
    • /
    • pp.127-135
    • /
    • 2012
  • The processes of chemical and physical weathering occur simultaneously. The objective of this study was to estimate the degree weathered using fractal dimension through comparison with chemical characteristic of soil samples from Pohang (PH) and Kimpo (KP). Comparing chemical characteristics with fractal dimension, $SiO_2$, $Na_2O$, $K_2O$ content decreased and loss of ignition increased as fractal dimension increased. And fractal dimension showed high correlation with CWI while ATI, STI CIW, PI, CIA and RR demonstrated different degrees of correlation with fractal dimension. The tendency of the changes in oxide content and chemical weathering index with increasing fractal dimension appeared to be similar with the chemical changes due to weathering. Therefore, fractal dimension could be a good indicator representing the extent of weathering and chemical changes.

Modeling Electrical Characteristics for Multi-Finger MOSFETs Based on Drain Voltage Variation

  • Kang, Min-Gu;Yun, Il-Gu
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.6
    • /
    • pp.245-248
    • /
    • 2011
  • The scaling down of metal oxide semiconductor field-effect transistors (MOSFETs) for the last several years has contributed to the reduction of the scaling variables and device parameters as well as the operating voltage of the MOSFET. At the same time, the variation in the electrical characteristics of MOSFETs is one of the major issues that need to be solved. Especially because the issue with variation is magnified as the drive voltage is decreased. Therefore, this paper will focus on the variations between electrical characteristics and drain voltage. In order to do this, the test patterned multi-finger MOSFETs using 90-nm process is used to investigate the characteristic variations, such as the threshold voltage, DIBL, subthreshold swing, transconductance and mobility via parasitic resistance extraction method. These characteristics can be analyzed by varying the gate width and length, and the number of fingers. Through this modeling scheme, the characteristic variations of multi-finger MOSFETs can be analyzed.

The Effect of Oxide Layer Formed on TiN Coated Ball and Steel Disk on Friction Characteristics in Various Sliding Conditions (미끄럼조건에 따라 TiN 코팅볼과 스틸디스크에 형성되는 산화막이 마찰특성에 미치는 영향)

  • 조정우;이영제
    • Tribology and Lubricants
    • /
    • v.17 no.6
    • /
    • pp.459-466
    • /
    • 2001
  • In this study, the effects of oxide layer formed on the contact parts of TiN coated ball and steel disk on friction characteristics in various sliding conditions were investigated. AISI52100 steel ball was used for the substrate of coated ball specimens, which were prepared by depositing TiN coating with 1(m in coating thickness. AISI1045 steel was used for the disk type counter-body. To investigate the effect of oxide layer on the contact parts of two materials, the tests were performed both in air for forming oxide layer on the contact parts and in nitrogen environment to avoid oxidation. From the test results, the frictional characteristic between the two materials was predominated by iron oxide layer that formed on wear tract of counter-body and this layer caused friction transition and high friction. And the adhesive wear occurred from steel disk to TiN coated ball caused the formation of oxide layer on counter parts between the two materials.

Reliability Aging of Oxide Integrity on Low Temperature Polycrystalline Silicon TFTs

  • Chen, Chih-Chiang;Hung, Wen-Yu;Chen, Pi-Fu;Yeh, Yung-Hui
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.515-518
    • /
    • 2002
  • In this paper, we demonstrate the impact of oxide interface-state on low temperature poly-Si TFTs. The TFTs with interface-state exhibit poor performance and serious degradation under hot carrier and gate bias stress. Our results indicate that the worse oxide integrity cause initial characteristic shift and device instability.

  • PDF

Carrier Trap Characteristics varying with insulator thickness of MIS device (MIS소자의 절연막 두께 변화에 따른 캐리어 트랩 특성)

  • 정양희
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.11a
    • /
    • pp.800-803
    • /
    • 2002
  • The MONOS capacitor are fabricated to investigate the carrier trapping due to Fowler-Nordheim tunneling injection. The carrier trapping in scaled multi-dielectric(ONO) depends on the nitride and Op oxide thickness under Fowler_Nordheim tunneling injection. Carriers captured at nitride film could not escape from nitride to gate, but be captured at top oxide and nitride interface traps because of barrier height of top oxide. Therefore, it is expected that the MONOS memory devices using multi dielectric films enhance memory effect and have a long memory retention characteristic.

  • PDF

A Fabrication and Characteristic Estimation of Polycrystalline Silicon Structural Layer for Micromachining (미세가공용 다결정 실리콘 구조체의 제작 및 특성 평가)

  • Kim, Hyoung-Dong;Pack, Seung-Ho;Lee, Seong-Jun;Kim, Chul-Ju
    • Proceedings of the KIEE Conference
    • /
    • 1995.07c
    • /
    • pp.1442-1444
    • /
    • 1995
  • In this study, we confirmed that the crystallinity and the mechanical properties of polycrystalline Silicon(poly-Si) deposited on the poly-oxide are better than those of poly-Si on the conventional sacrificial layers that is CVD oxide layer or PSG. But the etch rate of poly-oxide is poor than that of the CVD oxide layer or PSG. Therefore, to make the best use of small stress and fast etch rate, we fabricated the double oxide layer; 10%-thick poly-oxide on 90%-thick CVD oxide or PSG. To estimate structure deformation by stress, we fabricated the test structures; cantilever. bridge and ring/beam structure and estimated by SEM. As the results, all structure is expressed the deformed structure by residual stress(tensile stress) and the deformation of the structure layer on the double oxide layer is small compared with that of the structure layer on the CVD oxide layer or PSG. And, the etch rate of the double oxide layer is enhanced compared with that of the poly-oxide.

  • PDF

A Study on the Characteristic of MOS structure using $HfO_{2}$ as high-k gate dielectric film ($HfO_{2}$를 이용한 MOS 구조의 제작 및 특성)

  • Park, C.I.;Youm, M.S.;Park, J.W.;Kim, J.W.;Sung, M.Y.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.163-166
    • /
    • 2002
  • We investigated structural and electrical properties of Metal-Oxide-Semiconductor(MOS) structure using Hafnium $oxide(HfO_{2})$ as high-k gate dielectric material. $HfO_{2}$ films are ultrathin gate dielectric material witch have a thickness less than 2.0nm, so it is spotlighted to be substituted $SiO_{2}$ as gate dielectric material. In this paper We have grown $HfO_{2}$ films with pt electrode on P-type Silicon substrate by RF magnetron sputtering system using $HfO_{2}$ target and oserved the property of semiconductor-oxide interface. Using pt electrode, it is necessary to be annealed at ${300^{\circ}C}$. This process is to increase an adhesion ratio between $HfO_{2}$ films with pt electrode. In film deposition process, the deposition time of $HfO_{2}$ films is an important parameter. Structura1 properties are invetigated by AES depth profile, and electrical properties by Capacitance-Voltage characteristic. Interface trap density are measured to observe the interface between $HfO_{2}$ with Si using High-frequency(1MHz) C-V and Quasi - static C-V characteristic.

  • PDF

Electric-field Assisted Photochemical Metal Organic Deposition for Forming-less Resistive Switching Device (전기장 광화학 증착법에 의한 직접패턴 비정질 FeOx 박막의 제조 및 저항변화 특성)

  • Kim, Su-Min;Lee, Hong-Sub
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.4
    • /
    • pp.77-81
    • /
    • 2020
  • Resistive RAM (ReRAM) is a strong candidate for the next-generation nonvolatile memories which use the resistive switching characteristic of transition metal oxides. The resistive switching behaviors originate from the redistribution of oxygen vacancies inside of the oxide film by applied programming voltage. Therefore, controlling the oxygen vacancy inside transition metal oxide film is most important to obtain and control the resistive switching characteristic. In this study, we introduced an applying electric field into photochemical metal-organic deposition (PMOD) process to control the oxidation state of metal oxide thin film during the photochemical reaction by UV exposure. As a result, the surface oxidation state of FeOx film could be successfully controlled by the electric field-assisted PMOD (EFAPMOD), and the controlled oxidation states were confirmed by x-ray photoelectron spectroscopy (XPS) I-V characteristic. And the resistive switching characteristics with the oxidation-state of the surface region could be controlled effectively by adjusting an electric field during EFAPMOD process.

Study on Reversible Electrolysis Characteristic of a Planar Type SOFC (평판형 고체산화물 연료전지의 양방향 수전해 특성 연구)

  • CHOI, YOUNGJAE;AHN, JINSOO
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.6
    • /
    • pp.657-662
    • /
    • 2017
  • This paper presents the reversible electrolysis characteristics of a solid oxide fuel cell (SOFC) using a $10{\times}10cm^2$ anode supported planar cell with an active area of $81cm^2$. In this work, current-voltage characteristic test and reversible electrolysis cycle test were carried out sequentially for 2,114 hours at a furnace temperature of $700^{\circ}C$. The current-voltage characteristics for reversible electrolysis mode was measured at a current of ${\pm}26.7A$ under various $H_2O$ utilization conditions. The reversible electrolysis cycle was performed 50 times at a current of ${\pm}32.4A$. As a result, The performance degradation of SOEC mode was larger than that of SOFC mode.