• 제목/요약/키워드: Oxide characteristic

Search Result 471, Processing Time 0.025 seconds

Characteristic Classification of Aroma Oil with Gas Sensors Array and Pattern Recognition (가스센서 어레이와 패턴인식을 활용한 아로마 오일의 특성 분류)

  • Choi, Il-Hwan;Hong, Sung-Joo;Kim, Sun-Tae
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.118-125
    • /
    • 2018
  • An evaluation system for an electronic-nose concept using three types of metal oxide gas sensors that react similarly to the human olfactory cells was constructed for the quantitative and qualitative evaluation of aroma fragrances. Four types of aroma fragrances (lavender, orange, jasmine, and Roman chamomile), which are commonly used in aromatherapy, were evaluated. All the gas sensors reacted remarkably to the aroma fragrances and the good correlation of r=0.58-0.88 with the aromatic odor intensities by olfaction was confirmed. From the results of the analysis of an electronic-nose concept for classifying the characteristics of aroma oil fragrances, aroma oils could be classified using the fragrance characteristics and oil extraction methods with the cumulative variability contribution rate of 95.65% (F1: 69.65%, F2: 26.03%) by principal component analysis. In the pattern recognition based on the artificial neural network, the four aroma fragrances were 100% recognized through the training data of 56 cases (70%) out of 80 cases, and the pattern recognition rate was 57.1%-71.4% through the validation and testing data of 24 cases (30%). The pattern recognition success rate through all confusion matrices was 82.1%, indicating that the classification of aroma oil fragrances using the three types of gas sensors was successful.

Thermal Runaway Prevention of MOV and Safety Improvement of Power Line System and Internal Electronic Device Circuit Using a Phosphorous Switching Module (인청동 스위칭 모듈을 이용한 전력계통 및 전자기기 내부회로의 MOV 열폭주 방지와 안전성 개선)

  • Kim, Ju-Chul;Choi, Gyung-Ray;Lee, Sang-Joong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.9
    • /
    • pp.75-79
    • /
    • 2011
  • The MOV(Metal Oxide Varistor), a voltage limiting element, has been installed in the SPD(Surge Protective Device) or inside the internal circuit of an electronic appliance for protection of the electric power system and electronic device against electrical surge. Such an MOV is exposed, however, to the risk of the thermal runaway resulting from excessive voltage and deterioration. In this paper, a reciprocal action has been tested and analyzed using a phosphorus bronze switching module and the low-temperature solder. And a short current break characteristic test linked with the circuit breaker has been performed to limit the inrush current when the MOV breaks down. It has been proven that the phosphorus bronze switching module installed inside the internal circuit can improve the safety of the power line system and the electronic device.

Modeling of PECVD Oxide Film Properties Using Neural Networks (신경회로망을 이용한 PECVD 산화막의 특성 모형화)

  • Lee, Eun-Jin;Kim, Tae-Seon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.11
    • /
    • pp.831-836
    • /
    • 2010
  • In this paper, Plasma Enhanced Chemical Vapor Deposition (PECVD) $SiO_2$ film properties are modeled using statistical analysis and neural networks. For systemic analysis, Box-Behnken's 3 factor design of experiments (DOE) with response surface method are used. For characterization, deposited film thickness and film stress are considered as film properties and three process input factors including plasma RF power, flow rate of $N_2O$ gas, and flow rate of 5% $SiH_4$ gas contained at $N_2$ gas are considered for modeling. For film thickness characterization, regression based model showed only 0.71% of root mean squared (RMS) error. Also, for film stress model case, both regression model and neural prediction model showed acceptable RMS error. For sensitivity analysis, compare to conventional fixed mid point based analysis, proposed sensitivity analysis for entire range of interest support more process information to optimize process recipes to satisfy specific film characteristic requirements.

Purification and Characterization of Antistaphylococcal Substance from Pseudomonas sp. KUH-001

  • Hwang, Se-Young;Lee, So-Hee;Song, Kook-Jong;Kim, Yong-Pil;Kawahara, Kazuyoshi
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.2
    • /
    • pp.111-118
    • /
    • 1998
  • A bacterium producing unique antistaphylococcal substance (ASS) was isolated from soil samples. The isolated strain KUH-001 was identified to belong to Pseudomonas species from the characteristic properties of its fluorescence and cellular 3-hydroxy fatty acid composition, etc. The ASS component was purified by procedures employing activated carbon adsorption, column chromatography with silica gel, preparative TLC and HPLC. This compound could also be purified mainly by repeating of trituration and precipitation with chilled ether. Purified ASS with a m.p. value of $140~142^{\circ}C$ showed marked stability at high temperature (at $121^{\circ}C$ for 10 min) and extreme pHs (in 1N HC1 and 1N NaOH for 1 day) without significant loss of antibiotic activity. From spectral data of UV, IR, NMR, and FAB-MS, the compound was elucidated as 2-heptyl-4-hydroxyquinoline N-oxide (HHQO). Under the conditions employed, HHQO exhibited a narrow antimicrobial spectrum. active particularly against Staphylococcus aureus including the methicillin resistant strain. Moreover, it did not induce resistance, and besides, interacted synergistically with certain antibiotics such as vancomycin or erythromycin.

  • PDF

Effects of Two Phase Flow on Erosion Characteristic in a Rocket Nozzle (2상 유동에 의한 로켓 노즐 마모 특성에 대한 고찰)

  • 김완식;유만선;조형희;배주찬
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.3 no.4
    • /
    • pp.83-92
    • /
    • 1999
  • A numerical analysis of two phase flow in the solid rocket nozzle was conducted. Stoke number was defined over the various aluminum oxide($AI_2$$O_3$) particle sizes and particle trajectories were treated by Lagrangian approach. Particle stability was considered by the definition of Weber number in a rocket nozzle. Large particles are divided after the nozzle throat as the flow accelerates rapidly. The division of particles changes the particle distribution at the nozzle exit. From the above results, it was found that the nozzle converge section surface might be affected by aluminum oxide particles. Also, Mechanical erosion rate of nozzle surface was predicted for different materials.

  • PDF

The effect on characteristic of ITO(glass) by polyimide thin film process (Polyimide 막 공정이 ITO Glass의 특성에 미치는 영향)

  • Kim, Ho-Soo;Kim, Han-Il;Jung, Soon-Won;Koo, Kyung-Wan;Han, Sang-Ok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.857-860
    • /
    • 2002
  • The material that is both conductive in electricity and transparent to the visible-ray is called transparent conducting thin film. It has many field of application such as solar cell, liquid crystal display, transparent electrical heater, selective optical filter, and a optical electric device. In this study, indium tin oxide (ITO ; Sn-doped $In_2O_3$) thin films were deposited on $SiO_2$/soda-lime glass plates by a dc magnetron sputtering technique. The crystallinity and electrical properties of the films were investigated by X-ray diffraction(XRD), atomic force microscopy (AFM) scanning and 4-point probe. The optical transmittance of ITO films in the range of 300-1000nm were measured with a spectrophotometer. As a result, we obtained polycrystalline structured ITO films with (222), (400), and (440) peak. Transmittance of all the films were higher than 90% in the visible range.

  • PDF

Analysis of Transport Characteristics for Double Gate MOSFET using Analytical Current-Voltage Model (해석학적 전류-전압모델을 이용한 이중게이트 MOSFET의 전송특성분석)

  • Jung Hak-Kee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.9
    • /
    • pp.1648-1653
    • /
    • 2006
  • In this paper, transport characteristics have been investigated using analytical current-voltage model for double gate MOSFET(DGMOSFET). Scaling down to 100nm of gate length for MOSFET can bring about various problems such as a threshold voltage roll-off and increasing off current by tunneling since thickness of oxide is down by 1.fnm and doping concentration is increased. A current-voltage characteristics have been calculated according to changing of channel length,using analytical current-voltage relation. The analytical model has been verified by calculating I-V relation according to changing of oxide thickness and channel thickness as well as channel length. A current-voltage characteristics also have been compared and analyzed for operating temperature. When gate voltage is 2V, it is shown that a current-voltage characteristic in 77K is superior to in room temperature.

Effect of Sintering lime on Electrical Stability against Surge Stress of Zn-Pr-Co-Cr-Y Oxide-based Varistors (Zn-Pr-Co-Cr-Y 산화물계 바리스터의 써지 스트레스에 대한 전기적 안정성에 소결시간의 영향)

  • Nahm, Choon-Woo;Park, Jong-Ah;Yoo, Dea-Hoon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.7
    • /
    • pp.615-621
    • /
    • 2005
  • The electrical stability against surge stress of varistors, which are composed of Zn-Pr-Co-Cr-Y oxide system, were investigated at different sintering times. As sintering time increases, the varistor voltage and nonlinear exponent decreased in the range of $279.6\~179.1$ and $52.5\~24.9$, respectively. On the contrary, the leakage current and dielectric dissipation factor increased in the range of $1.2\~9.8\;{\mu}A$ and 0.0461\~0.0651 with increase of sintering time. For all varistors, the variation rates of V-I characteristic parameters against surge stress were more strongly affected in order of varistor voltage ${\rightarrow}nonlnear$ $exponent{\rightarrow}leakage$ current. On the whole, the electrical stability against surge stress increased with increasing sintering time. Conclusively, it is assumed that the varistors sintered for 2 h exhibited comparatively good characteristics, in view of overall characteristics.

Degradation of SOFC Cell/Stack Performance in Relation to Materials Deterioration

  • Yokokawa, Harumi;Horita, Teruhisa;Yamaji, Katsuhiko;Kishimoto, Haruo;Brito, M.E.
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.1
    • /
    • pp.11-18
    • /
    • 2012
  • The characteristic features of solid oxide fuel cells are reviewed from the viewpoint of the thermodynamic variables to be developed inside cells/stacks particularly in terms of gradients of chemical potential, electrical potential and temperature and corresponding flows of air, fuel, electricity and heat. Examples of abrupt destruction of SOFC systems were collected from failures in controlling their steady flows, while continuous degradation was caused by materials behaviors under gradients of chemical potentials during a long operation. The local equilibrium approximation has been adopted in NEDO project on the durability/reliability of SOFC stacks/systems; this makes it possible to examine the thermodynamic stability/reactivity as well as mass transfer under the thermodynamic variable gradients. Major results of the NEDO project are described with a focus on degradation/deterioration of electrolyte and electrode materials.

A study of planarization in polysilicon MEMS structure (폴리실리콘 MEMS 구조물의 평탄화에 관한 연구)

  • Jeong, Moon-Ki;Park, Sung-Min;Jung, Jae-Woo;Jeong, Hae-Do;Kim, Hyoung-Jae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.362-363
    • /
    • 2005
  • The objectives of this paper are to achieve good planarization of the deposited film and to improve deposition efficiency of multi-layer structures by using surface-micromaching process in MEMS technology. Planarization characteristic of poly-Si film deposited on thin oxide layer with MEMS structures is evaluated with different slurries. Patterns used for this research have shapes of square, density, line, hole, pillar, and micro engine part. Advantages and disadvantages of CMP for MEMS structures are observed respectively by using the test patterns with structures larger than 1 um line width. Preliminary tests for material selectivity of poly-Si and oxide are conducted with two types of slurries: ILD1300 and Nalco2371. And then, the experiments were conducted based on the pretest.

  • PDF