• Title/Summary/Keyword: Oxidative stress.

Search Result 3,471, Processing Time 0.035 seconds

Effects of Salicylic Acid on Oxidative Stress and UV-B Tolerance in Cucumber Leaves (살리실산이 오이 잎의 산화적 스트레스와 UV-B 내성에 미치는 영향)

  • Hong, Jung-Hee;Kim, Tae-Yun
    • Journal of Environmental Science International
    • /
    • v.16 no.12
    • /
    • pp.1345-1353
    • /
    • 2007
  • The effect of salicylic acid(SA) on antioxidant system and protective mechanisms against UV-B induced oxidative stress was investigated in cucumber(Cucumis sativus L.) leaves. UV-B radiation and SA were applied separately or in combination to first leaves of cucumber seedlings, and dry matter accumulation, lipid peroxidation and activities of antioxidant enzymes were measured in both dose and time-dependant manner. UV-B exposure showed reduced levels of fresh weight and dry matter production, whereas SA treatment significantly increased them. SA noticeably recovered the UV-B induced inhibition of biomass production. UV-B stress also affected lipid peroxidation and antioxidant enzyme defense system. Malondialdehyde(MDA), a product of lipid peroxidation, was greatly increased under UV-B stress, showing a significant enhancement of a secondary metabolites, which may have antioxidative properties in cucumber leaves exposed to UV-B radiation. Combined application of UV-B and SA caused a moderate increase in lipid peroxidation. These results suggest that SA may mediate protection against oxidative stress. UV-B exposure significantly increased SOD, APX, and GR activity compared with untreated control plants. Those plants treated with 1.0 mM SA showed a similar pattern of changes in activities of antioxidant enzymes. SA-mediated induction of antioxidant enzyme activity may involve a protective accumulation of $H_2O_2$ against UV-B stress. Moreover, their activities were stimulated with a greater increase by UV-B+SA treatment. The UV-B+SA plants always presented higher values than UV-B and SA plants, considering the adverse effects of UV-B on the antioxidant cell system. ABA and JA, second messengers in signaling in response to stresses, showed similar mode of action in UV-B stress, supporting that they may be important in acquired stress tolerance. Based on these results, it can be suggested that SA may participates in the induction of protective mechanisms involved in tolerance to UV-B induced oxidative stress.

Effect of the Inhibition of $PLA_2$ on the Oxidative Stress in the Lungs of Glutathione Depleted Rats Given Endotoxin Intratracheally (Glutathione이 고갈된 흰쥐에서 내독소에 의해 유도된 급성 폐손상시 $PLA_2$ 억제가 산소기 형성에 미치는 영향)

  • Cho, Hyun-Gug;Moon, Hye-Jung;Park, Won-Hark;Kim, Te-Oan;Lee, Young-Man
    • Tuberculosis and Respiratory Diseases
    • /
    • v.48 no.2
    • /
    • pp.246-259
    • /
    • 2000
  • Background: As one of the etiologies of acute respiratory distress syndrome(ARDS), sepsis is one of the morbid causes of this cryptogenic malady. Even though many documents on the role of endotoxin(ETX) in the pathogenesis of ARDS have been issued, still the underlying mechanism associated with oxidative stress and activation of $PLA_2$ has been controversial. In the present study, the role of phospholipase $A_2(PLA_2)$ in the neutrophilic respiratory burst, which is presumed to cause acute lung injury during sepsis, was probed. Method: In glutathione-depleted Sprague-Dawley rats, lung leak, infiltration of neutrophils, $PLA_2$ activity and lipid peroxidation in the lung were measured after intratracheal instillation of endotoxin(delete). In addition, gamma glutamyl transferase(GGT) activity and the amount of pulmonary surfactant were measured. Morphologically, the changes in ultrastructure and cytochemical demonstration of oxidants were presented to confirm the neutrophilic oxidative stress and to elucidate the effects of $PLA_2$ activation on(delete) oxidative stress. Results: Instillation of ETX to glutathione-depleted rats intensified lung leak and lipid peroxidation when compared with non-glutathione depleted rats treated with the endotoxin. Moreover, oxidative stress was confirmed by the assay of GGT and malondialdehyde. Functionally, the depletion of glutathione altered the secretion of pulmonary surfactant from alveolar type II cells. Ultrastructurally and cytochemicaliy, oxidative stress was also confirmed after treatment of with ETX and diethylmaleate(DEM). Conclusion: The endotoxin-induced acute lung injury was mediated by oxidative stress, which in turn was provoked by the neutrophilic respiratory burst. The activation of $PLA_2$ in the lung seems to playa pivotal role in the oxidative stress of the lung.

  • PDF

Detection of Urinary 8-Hydroxyguanine Adduct as Exposure Biomarker for Oxidative Stress (산화적스트레스에 대한 노출척도로서 뇨중 8-Hydroxyguanine Adduct의 측정)

  • 유아선;김윤신;모인필;마응천;조명행
    • Toxicological Research
    • /
    • v.14 no.4
    • /
    • pp.515-523
    • /
    • 1998
  • Oxidative stress by reactive oxygen species (ROS) damages cellular DNA, RNA, proteins, lipids and others causing various diseases such as cancer, arthritis, and heart diseases. 8-Hydroxyguanine (8-OHG) is one of the products formed from DNA or RNA damaged by ROS. Since high amounts of 8-OHG can be excreted in urine, it may serve as a potential biomarker indicating the level of oxidative damage to nucleic acids. Residents in industrial area with severe air pollution are expected to be affected by higher level of oxidative stress from pollutants like polyaromatic hydrocarbons (PAHs), etc. Smokers are also expected to be damaged by higher level of oxidative stress from cigarette smoke components like PAHs than non-smokers. To examine if the determination of the urinary concentration of 8-OHG could be used as exposure biomarker for the oxidative stress caused by air-pollutants, this study was performed to determine and compare the urinary concentrations of 8-OHG in smokers and non-smokers, or non-polluted area residents and polluted area residents. Urine samples were collected and purified by a strong cation exchange and cellulose partition column, then analyzed by HPLC with electrochemical detector at 600 ㎷ potential. Concentrations of urinary 8-OHG in non-smokers and smokers of Seoul area college male students were determined as 15.12$\pm$9.68 (ng/mg creatinine) and 34.72$\pm$11.72 (ng/mg creatinine), respectively, showing significantly higher level of 8-OHG in smokers than in non-smokers. Urine samples of elementary school students were collected from Sokcho area, which is known to be non-polluted, and 3 representative polluted areas; Yocheon industrial area, Ulsan urban and Ulsan industrial area. The concentrations of 8-OHG in these samples were 12.42$\pm$8.27 (ng/ mg creatinine, Sokcho), 22.55$\pm$9.12 (ng/mg creatinine, Yocheon), 17.41$\pm$2.30 (ng/mg creatinine, Ulsan urban), 55.04$\pm$39.73 (ng/mg creatinine, Ulsan industrial). Thus, samples from polluted area tend to have higher level of 8-OHG and the levels of Yocheon and Ulsan industrial area were significantly higher than that of Sokcho area. The results indicate that the residents of polluted industrial area or smokers are more severely exposed to oxidative stress probably caused by air pollutants like PAHs. Thus, the determination of urinary 8-OHG concentration could be used as biomarker for the extent of body exposure to oxidative stress caused by various pollutants.

  • PDF

Green perilla leaf extract ameliorates long-term oxidative stress induced by a high-fat diet in aging mice

  • Edward, Olivet Chiamaka;Thomas, Shalom Sara;Cha, Kyung-Ok;Jung, Hyun-Ah;Han, Anna;Cha, Youn-Soo
    • Nutrition Research and Practice
    • /
    • v.16 no.5
    • /
    • pp.549-564
    • /
    • 2022
  • BACKGROUND/OBJECTIVES: Oxidative stress is caused by an imbalance between harmful free radicals and antioxidants. Long-term oxidative stress can lead to an "exhausted" status of antioxidant defense system triggering development of metabolic syndrome and chronic inflammation. Green perilla (Perilla frutescens) is commonly used in Asian cuisines and traditional medicine in southeast Asia. Green perilla possesses numerous beneficial effects including anti-inflammatory and antioxidant functions. To investigate the potentials of green perilla leaf extract (PE) on oxidative stress, we induced oxidative stress by high-fat diet (HFD) in aging mice. MATERIALS/METHODS: C57BL/6J male mice were fed HFD continuously for 53 weeks. Then, mice were divided into three groups for 12 weeks: a normal diet fed reference group (NDcon), high-fat diet fed group (HDcon), and high-fat diet PE treated group (HDPE, 400 mg/kg of body weight). Biochemical analyses of serum and liver tissues were performed to assess metabolic and inflammatory damage and oxidative status. Hepatic gene expression of oxidative stress and inflammation related enzymes were evaluated by quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS: PE improved hepatopathology. PE also improved the lipid profiles and antioxidant enzymes, including hepatic glutathione peroxidase (GPx) and superoxide dismutase (SOD) and catalase (CAT) in serum and liver. Hepatic gene expressions of antioxidant and anti-inflammatory related enzymes, such as SOD-1, CAT, interleukin 4 (IL-4) and nuclear factor erythroid 2-related factor (Nrf2) were significantly enhanced by PE. PE also reduced the levels of hydrogen peroxide (H2O2) and malondialdehyde (MDA) in the serum and liver; moreover, PE suppressed hepatic gene expression involved in pro-inflammatory response; Cyclooxygenase-2 (COX-2), nitric oxide synthase (NOS), interleukin 1 beta (IL-1β), and interleukin 6 (IL-6). CONCLUSIONS: This research opens opportunities for further investigations of PE as a functional food and possible anti-aging agent due to its attenuative effects against oxidative stress, resulting from HFD and aging in the future.

Oxidative Stress, Nrf2, and Epigenetic Modification Contribute to Anticancer Drug Resistance

  • Kang, Kyoung Ah;Hyun, Jin Won
    • Toxicological Research
    • /
    • v.33 no.1
    • /
    • pp.1-5
    • /
    • 2017
  • Nuclear factor E2-related factor 2 (Nrf2), a transcription factor, controls the expression of genes encoding cytoprotective proteins, including antioxidant enzymes that combat oxidative and electrophilic stress to maintain redox homeostasis. However, recent studies demonstrated that, in cancer, aberrant activation of Nrf2 by epigenetic alterations promotes high expression of cytoprotective proteins, which can decrease the efficacy of anticancer drugs used for chemotherapy. In this review, we summarize recent findings regarding the relationship between oxidative stress, Nrf2, epigenetic modification, and anticancer drug resistance, which should aid in development of new strategies to improve chemotherapeutic efficacy.

Effect of Polyopes lancifolia Extract on Oxidative Stress in Human Umbilical Vein Endothelial Cells Induced by High Glucose

  • Min, Seong Won;Han, Ji Sook
    • Preventive Nutrition and Food Science
    • /
    • v.18 no.1
    • /
    • pp.38-44
    • /
    • 2013
  • The protective effect of Polyopes lancifolia extract on high glucose-induced oxidative stress was investigated using human umbilical vein endothelial cells (HUVECs). High concentration of glucose (30 mM) treatment induced HUVECs cell death, but Polyopes lancifolia extract, at concentrations of 25, 50, and $100{\mu}g/mL$, protected cells from high glucose-induced damage. Furthermore, thiobarbituric acid reactive substances, intracellular reactive oxygen species, and nitric oxide levels increased by high glucose treatment were effectively decreased by treatment with Polyopes lancifolia extract in a dose-dependent manner. Also, Polyopes lancifolia extract treatment reduced the overexpressions of inducible nitric oxide synthase, cyclooxygenase-2, and nuclear factor-kappa B proteins activation that was induced by high glucose in HUVECs. These results indicate that Polyopes lancifolia extract is a potential therapeutic material that will reduce the damage caused by high glucose-induced-oxidative stress associated with diabetes.

Cellular and Molecular Pathways of Ischemic Neuronal Death

  • Won, Seok-Joon;Kim, Doo-Yeon;Gwag, Byoung-Joo
    • BMB Reports
    • /
    • v.35 no.1
    • /
    • pp.67-86
    • /
    • 2002
  • Three routes have been identified triggering neuronal death under physiological and pathological conditions. Excess activation of ionotropic glutamate receptors cause influx and accumulation of $Ca^{2+}$ and $Na^+$ that result in rapid swelling and subsequent neuronal death within a few hours. The second route is caused by oxidative stress due to accumulation of reactive oxygen and nitrogen species. Apoptosis or programmed cell death that often occurs during developmental process has been coined as additional route to pathological neuronal death in the mature nervous system. Evidence is being accumulated that excitotoxicity, oxidative stress, and apoptosis propagate through distinctive and mutually exclusive signal transduction pathway and contribute to neuronal loss following hypoxic-ischemic brain injury. Thus, the therapeutic intervention of hypoxic-ischemic neuronal injury should be aimed to prevent excitotoxicity, oxidative stress, and apoptosis in a concerted way.

Role of tea catechins in prevention of aging and age-related disorders

  • Khanna, Arjun;Maurya, Pawan Kumar
    • CELLMED
    • /
    • v.2 no.1
    • /
    • pp.2.1-2.11
    • /
    • 2012
  • Tea polyphenols especially catechins have long been studied for their antioxidant and radical scavenging properties. Scientists throughout the world have investigated the usefulness of the regular green tea consumption in several disease conditions. In-vitro and in-vivo experiments on catechins especially epigallocatechingallate have revealed a significant role in many ways. Reactive oxygen species have been increasingly implicated in the pathogenesis of many diseases and important biological processes. Toxic effects of these oxidants, commonly referred to as oxidative stress, can cause cellular damage by oxidizing nucleic acids, proteins, and membrane lipids. Oxidative stress has been related to aging and age related disorders. It is found that in a wide variety of pathological processes, including cancer, atherosclerosis, neurological degeneration, Alzheimer's disease, ageing and autoimmune disorders, oxidative stress has its implications. Catechins have been reported to be useful in combating aging and age related disorders like cancer, cardiovascular disorders and neurodegenerative diseases. In this mini review we will discuss such studies done across the globe.

Over-expression of Cu/ZnSOD Increases Cadmium Tolerance in Arabidopsis thaliana

  • Cho, Un-Haing
    • Journal of Ecology and Environment
    • /
    • v.30 no.3
    • /
    • pp.257-264
    • /
    • 2007
  • Over-expression of a copper/zinc superoxide dismutase (Cu/ZnSOD) resulted in substantially increased tolerance to cadmium exposure in Arabidopsis thaliana. Lower lipid peroxidation and $H_2O_2$ accumulation and the higher activities of $H_2O_2$ scavenging enzymes, including catalase (CAT) and ascorbate peroxidase (APX) in transformants (CuZnSOD-tr) compared to untransformed controls (wt) indicated that oxidative stress was the key factor in cadmium tolerance. Although progressive reductions in the dark-adapted photochemical efficiency (Fv/Fm) and quantum efficiency yield were observed with increasing cadmium levels, the chlorophyll fluorescence parameters were less marked in CuZnSOD-tr than in wi. These observations indicate that oxidative stress in the photosynthetic apparatus is a principal cause of Cd-induced phytotoxicity, and that Cu/ZnSOD plays a critical role in protection against Cd-induced oxidative stress.

Role of the PLA2-Activated Neutrophilic Oxidative Stress in Oleic Acid-Induced Acute Lung Injury

  • Lee, Young-Man;Kim, Byung-Yong;Park, Yoon-Yub
    • Tuberculosis and Respiratory Diseases
    • /
    • v.68 no.2
    • /
    • pp.55-61
    • /
    • 2010
  • Background: The underlying pathogenesis of fat embolism-induced acute lung injury (ALI) has not been elucidated. In the present study, the pathogenesis of fat embolism-induced ALI was probed in association with neutrophilic oxidative stress in oleic acid (OA)-induced ALI of S-D rats. Methods: OA was injected intravenously to provoke ALI in experimental rats. Five hours later, indices of ALI were measured to confirm the role of the neutrophilic respiratory burst. The effect of an inhibition of phospholipase A2 (PLA2) was also evaluated. Results: The accumulation of neutrophils in the lung due to OA caused increased neutrophilic oxidative stress in lung, which was ameliorated by mepacrine. What were the results from inhibition of PLA2. Conclusion: Excess neutrophilic oxidative stress contributes to OA-induced ALI, which is lessened by the inhibition of PLA2.