DOI QR코드

DOI QR Code

Oxidative Stress, Nrf2, and Epigenetic Modification Contribute to Anticancer Drug Resistance

  • Kang, Kyoung Ah (Department of Biochemistry, School of Medicine, Jeju National University) ;
  • Hyun, Jin Won (Department of Biochemistry, School of Medicine, Jeju National University)
  • Received : 2016.09.19
  • Accepted : 2016.12.02
  • Published : 2017.01.15

Abstract

Nuclear factor E2-related factor 2 (Nrf2), a transcription factor, controls the expression of genes encoding cytoprotective proteins, including antioxidant enzymes that combat oxidative and electrophilic stress to maintain redox homeostasis. However, recent studies demonstrated that, in cancer, aberrant activation of Nrf2 by epigenetic alterations promotes high expression of cytoprotective proteins, which can decrease the efficacy of anticancer drugs used for chemotherapy. In this review, we summarize recent findings regarding the relationship between oxidative stress, Nrf2, epigenetic modification, and anticancer drug resistance, which should aid in development of new strategies to improve chemotherapeutic efficacy.

Keywords

References

  1. Bai, X., Chen, Y., Hou, X., Huang, M. and Jin, J. (2016) Emerging role of NRF2 in chemoresistance by regulating drug-metabolizing enzymes and efflux transporters. Drug Metab. Rev., 48, 541-567. https://doi.org/10.1080/03602532.2016.1197239
  2. Furfaro, A.L., Piras, S., Domenicotti, C., Fenoglio, D., De Luigi, A., Salmona, M., Moretta, L., Marinari, U.M., Pronzato, M.A., Traverso, N. and Nitti, M. (2016) Role of Nrf2, HO-1 and GSH in neuroblastoma cell resistance to bortezomib. PLoS ONE, 11, e0152465. https://doi.org/10.1371/journal.pone.0152465
  3. Guo, Y., Yu, S., Zhang, C. and Kong, A.N. (2015) Epigenetic regulation of Keap1-Nrf2 signaling. Free Radic. Biol. Med., 88, 337-349. https://doi.org/10.1016/j.freeradbiomed.2015.06.013
  4. Seton-Rogers, S. (2016) Chemotherapy: preventing competitive release. Nat. Rev. Cancer, 16, 199.
  5. Holohan, C., Van Schaeybroeck, S., Longley, D.B. and Johnston, P.G. (2013) Cancer drug resistance: an evolving paradigm. Nat. Rev. Cancer, 13, 714-726. https://doi.org/10.1038/nrc3599
  6. Ramos, P. and Bentires-Alj, M. (2015) Mechanism-based cancer therapy: resistanceto therapy, therapy for resistance. Oncogene, 34, 3617-3626. https://doi.org/10.1038/onc.2014.314
  7. Gorrini, C., Harris, I.S. and Mak, T.W. (2013) Modulation of oxidative stress as an anticancer strategy. Nat. Rev. Drug Discov., 12, 931-947. https://doi.org/10.1038/nrd4002
  8. Trachootham, D., Alexandre, J. and Huang, P. (2009) Target-ing cancercells by ROS-mediated mechanisms: a radical therapeutic approach? Nat. Rev. Drug Discov., 8, 579-591. https://doi.org/10.1038/nrd2803
  9. Liu, Y., Li, Q., Zhou, L., Xie, N., Nice, E.C., Zhang, H., Huang, C. and Lei, Y. (2016) Cancer drug resistance: redox resetting renders a way. Oncotarget, 7, 42740-42761. https://doi.org/10.18632/oncotarget.8600
  10. Debatin, K.M. and Krammer, P.H. (2004) Death receptors in chemotherapy and cancer. Oncogene, 23, 2950-2966. https://doi.org/10.1038/sj.onc.1207558
  11. Ren, D., Villeneuve, N.F., Jiang, T., Wu, T., Lau, A., Toppin, H.A. and Zhang, D.D. (2011) Brusatol enhances the efficacy of chemotherapy by inhibiting the Nrf2-mediated defense mechanism. Proc. Natl. Acad. Sci. U.S.A., 108, 1433-1438. https://doi.org/10.1073/pnas.1014275108
  12. DeNicola, G.M., Karreth, F.A., Humpton, T.J., Gopinathan, A., Wei, C., Frese, K., Mangal, D., Yu, K.H., Yeo, C.J., Calhoun, E.S., Scrimieri, F., Winter, J.M., Hruban, R.H., Iacobuzio- Donahue, C., Kern, S.E., Blair, I.A. and Tuveson, D.A. (2011) Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis. Nature, 475, 106-109. https://doi.org/10.1038/nature10189
  13. Zhang, Y. and Gordon, G.B. (2004) A strategy for cancer prevention: stimulation of the Nrf2-ARE signaling pathway. Mol. Cancer Ther., 3, 885-893.
  14. Giudice, A., Arra, C. and Turco, M.C. (2010) Review of molecular mechanisms involved in the activation of the Nrf2- ARE signaling pathway by chemopreventive agents. Methods Mol. Biol., 647, 37-74.
  15. Chio, I.I., Jafarnejad, S.M., Ponz-Sarvise, M., Park, Y., Rivera, K., Palm, W., Wilson, J., Sangar, V., Hao, Y., Ohlund, D., Wright, K., Filippini, D., Lee, E.J., Da Silva, B., Schoepfer, C., Wilkinson, J.E., Buscaglia, J.M., DeNicola, G.M., Tiriac, H., Hammell, M., Crawford, H.C., Schmidt, E.E., Thompson, C.B., Pappin, D.J., Sonenberg, N. and Tuveson, D.A. (2016) NRF2 promotes tumor maintenance by modulating mRNA translation in pancreatic cancer. Cell, 166, 963-976. https://doi.org/10.1016/j.cell.2016.06.056
  16. Sporn, M.B. and Liby, K.T. (2012) NRF2 and cancer: the good, the bad and the importance of context. Nat. Rev. Cancer, 12, 564-571. https://doi.org/10.1038/nrc3278
  17. Na, H.K. and Surh, Y.J. (2014) Oncogenic potential of Nrf2 and its principal target protein heme oxygenase-1. Free Radic. Biol. Med., 67, 353-365. https://doi.org/10.1016/j.freeradbiomed.2013.10.819
  18. Shen, L., Song, C.X., He, C. and Zhang, Y. (2014) Mechanism and function of oxidative reversal of DNA and RNA methylation. Annu. Rev. Biochem., 83, 585-614. https://doi.org/10.1146/annurev-biochem-060713-035513
  19. Ito, S., Shen, L., Dai, Q., Wu, S.C., Collins, L.B., Swenberg, J.A., He, C. and Zhang, Y. (2011) Tet proteins can convert 5- methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science, 333, 1300-1303. https://doi.org/10.1126/science.1210597
  20. Shilatifard, A. (2008) Molecular implementation and physiological roles for histone H3 lysine 4 (H3K4) methylation. Curr. Opin. Cell Biol., 20, 341-348. https://doi.org/10.1016/j.ceb.2008.03.019
  21. Coward, W.R., Feghali-Bostwick, C.A., Jenkins, G., Knox, A.J. and Pang, L. (2014) A central role for G9a and EZH2 in the epigenetic silencing of cyclooxygenase-2 in idiopathic pulmonary fibrosis. FASEB J., 28, 3183-3196. https://doi.org/10.1096/fj.13-241760
  22. Yang, D., Okamura, H., Teramachi, J. and Haneji, T. (2016) Histone demethylase Jmjd3 regulates osteoblast apoptosis through targeting anti-apoptotic protein Bcl-2 and pro-apoptotic protein Bim. Biochim. Biophys. Acta, 1863, 650-659. https://doi.org/10.1016/j.bbamcr.2016.01.006
  23. Wang, R., An, J., Ji, F., Jiao, H., Sun, H. and Zhou, D. (2008) Hypermethylation of the Keap1 gene in human lung cancer cell lines and lung cancer tissues. Biochem. Biophys. Res. Commun., 373, 151-154. https://doi.org/10.1016/j.bbrc.2008.06.004
  24. Muscarella, L.A., Barbano, R., D’Angelo, V., Copetti, M., Coco, M., Balsamo, T., la Torre, A., Notarangelo, A., Troiano, M., Parisi, S., Icolaro, N., Catapano, D., Valori, V. M., Pellegrini, F., Merla, G., Carella, M., Fazio, V.M. and Parrella, P. (2011) Regulation of Keap1 expression by promoter methylation in malignant gliomas and association with patient’s outcome. Epigenetics, 6, 317-325. https://doi.org/10.4161/epi.6.3.14408
  25. Li, Z., Xu, L., Tang, N., Xu, Y., Ye, X., Shen, S., Niu, X., Lu, S. and Chen, Z. (2014) The polycomb group protein EZH2 inhibits lung cancer cell growth by repressing the transcription factor Nrf2. FEBS Lett., 588, 3000-3007. https://doi.org/10.1016/j.febslet.2014.05.057
  26. Kang, K.A., Piao, M.J., Kim, K.C., Kang, H.K., Chang, W.Y., Park, I.C., Keum, Y.S., Surh, Y.J. and Hyun, J.W. (2014) Epigenetic modification of Nrf2 in 5-fluorouracil-resistant colon cancer cells: involvement of TET-dependent DNA demethylation. Cell Death Dis., 5, e1183. https://doi.org/10.1038/cddis.2014.149
  27. Kang, K.A., Piao, M.J., Ryu, Y.S., Kang, H.K., Chang, W.Y., Keum, Y.S. and Hyun, J.W. (2016) Interaction of DNA demethylase and histone methyltransferase upregulates Nrf2 in 5-fluorouracil-resistant colon cancer cells. Oncotarget, 7, 40594-40620. https://doi.org/10.18632/oncotarget.9745
  28. Mohan, M., Herz, H.M., Smith, E.R., Zhang, Y., Jackson, J., Washburn, M.P., Florens, L., Eissenberg, J.C. and Shilatifard, A. (2011) The COMPASS family of H3K4 methylases in Drosophila. Mol. Cell. Biol., 31, 4310-4318. https://doi.org/10.1128/MCB.06092-11
  29. Deplus, R., Delatte, B., Schwinn, M.K., Defrance, M., Méndez, J., Murphy, N., Dawson, M.A., Volkmar, M., Putmans, P., Calonne, E., Shih, A.H., Levine, R.L., Bernard, O., Mercher, T., Solary, E., Urh, M., Daniels, D.L. and Fuks, F. (2013) TET2 and TET3 regulate GlcNAcylation and H3K4 methylation through OGT and SET1/COMPASS. EMBO J., 32, 645-655. https://doi.org/10.1038/emboj.2012.357
  30. Ardehali, M.B., Mei, A., Zobeck, K.L., Caron, M., Lis, J.T. and Kusch, T. (2011) Drosophila Set1 is the major histone H3 lysine 4 trimethyltransferase with role in transcription. EMBO J., 30, 2817-2828. https://doi.org/10.1038/emboj.2011.194
  31. Capotosti, F., Guernier, S., Lammers, F., Waridel, P., Cai, Y., Jin, J., Conaway, J.W., Conaway, R.C. and Herr, W. (2011) OGlcNAc transferase catalyzes site-specific proteolysis of HCF-1. Cell, 144, 376-388. https://doi.org/10.1016/j.cell.2010.12.030
  32. Yokoyama, A., Wang, Z., Wysocka, J., Sanyal, M., Aufiero, D.J., Kitabayashi, I., Herr, W. and Cleary, M.L. (2004) Leukemia proto-oncoprotein MLL forms a SET1-like histone methyltransferase complex with menin to regulate Hox gene expression. Mol. Cell. Biol., 24, 5639-5649. https://doi.org/10.1128/MCB.24.13.5639-5649.2004
  33. Ding, X., Jiang, W., Zhou, P., Liu, L., Wan, X., Yuan, X., Wang, X., Chen, M., Chen, J., Yang, J., Kong, C., Li, B., Peng, C., Wong, C.C., Hou, F. and Zhang, Y. (2015) Mixed lineage leukemia 5 (MLL5) protein stability is cooperatively regulated by O-GlcNac transferase (OGT) and ubiquitin specific protease 7 (USP7). PLoS ONE, 10, e0145023. https://doi.org/10.1371/journal.pone.0145023

Cited by

  1. The Roles of ROS in Cancer Heterogeneity and Therapy vol.2017, pp.1942-0994, 2017, https://doi.org/10.1155/2017/2467940
  2. Nrf2: a potential therapeutic target for naturally occurring anticancer drugs? vol.21, pp.8, 2017, https://doi.org/10.1080/14728222.2017.1351549
  3. Cancer Chemopreventive Potential of Procyanidin vol.33, pp.4, 2017, https://doi.org/10.5487/TR.2017.33.4.273
  4. The orally active pterocarpanquinone LQB-118 exhibits cytotoxicity in prostate cancer cell and tumor models through cellular redox stress vol.78, pp.2, 2017, https://doi.org/10.1002/pros.23455
  5. Disulfiram/copper selectively eradicates AML leukemia stem cells in vitro and in vivo by simultaneous induction of ROS-JNK and inhibition of NF-κB and Nrf2 vol.8, pp.5, 2017, https://doi.org/10.1038/cddis.2017.176
  6. Exposure of keratinocytes to non-thermal dielectric barrier discharge plasma increases the level of 8-oxoguanine via inhibition of its repair enzyme vol.16, pp.5, 2017, https://doi.org/10.3892/mmr.2017.7454
  7. Cytochrome P450 1B1 promotes cancer cell survival via specificity protein 1 (Sp1)-mediated suppression of death receptor 4 vol.81, pp.9, 2018, https://doi.org/10.1080/15287394.2018.1440186
  8. Gene expression analysis in peripheral blood cells of patients with hereditary leiomyomatosis and renal cell cancer syndrome (HLRCC): identification of NRF2 pathway activation vol.17, pp.4, 2018, https://doi.org/10.1007/s10689-017-0068-9
  9. Sargassum serratifolium attenuates RANKL-induced osteoclast differentiation and oxidative stress through inhibition of NF-κB and activation of the Nrf2/HO-1 signaling pathway vol.12, pp.3, 2018, https://doi.org/10.5582/bst.2018.01107
  10. Activation of the Nrf2/HO-1 Signaling Pathway Contributes to the Protective Effects of Sargassum serratifolium Extract against Oxidative Stress-Induced DNA Damage and Apoptosis in SW1353 Human Chondrocytes vol.15, pp.6, 2018, https://doi.org/10.3390/ijerph15061173
  11. Photodynamic therapy using talaporfin sodium induces heme oxygenase-1 expression in rat malignant meningioma KMY-J cells vol.43, pp.5, 2018, https://doi.org/10.2131/jts.43.353