DOI QR코드

DOI QR Code

Cellular and Molecular Pathways of Ischemic Neuronal Death

  • Won, Seok-Joon (Center for the Interventional Therapy of Stroke and Alzheimers Disease, Department of Pharmacology, Ajou University School of Medicine) ;
  • Kim, Doo-Yeon (Genetics and Aging Research Unit, Massachusetts General Hospital East) ;
  • Gwag, Byoung-Joo (Center for the Interventional Therapy of Stroke and Alzheimers Disease, Department of Pharmacology, Ajou University School of Medicine)
  • Published : 2002.01.31

Abstract

Three routes have been identified triggering neuronal death under physiological and pathological conditions. Excess activation of ionotropic glutamate receptors cause influx and accumulation of $Ca^{2+}$ and $Na^+$ that result in rapid swelling and subsequent neuronal death within a few hours. The second route is caused by oxidative stress due to accumulation of reactive oxygen and nitrogen species. Apoptosis or programmed cell death that often occurs during developmental process has been coined as additional route to pathological neuronal death in the mature nervous system. Evidence is being accumulated that excitotoxicity, oxidative stress, and apoptosis propagate through distinctive and mutually exclusive signal transduction pathway and contribute to neuronal loss following hypoxic-ischemic brain injury. Thus, the therapeutic intervention of hypoxic-ischemic neuronal injury should be aimed to prevent excitotoxicity, oxidative stress, and apoptosis in a concerted way.

Keywords

References

  1. Alessandrini, A., Namura, S., Moskowitz, M. A. and Bonventre, J. V. (1999) MEK1 protein kinase inhibition protects against damage resulting from focal cerebral ischemia. Proc. Natl. Acad. Sci. USA 96, 12866-12869. https://doi.org/10.1073/pnas.96.22.12866
  2. Allen, J. W., Knoblach, S. M. and Faden, A. I. (1999) Combinedmechanical trauma and metabolic impairment in vitro inducesNMDA receptor-dependent neuronal cell death and caspase-3-dependent apoptosis. FASEB J. 13, 1875-1882. https://doi.org/10.1096/fasebj.13.13.1875
  3. Ankarcrona, M., Dypbukt, J. M., Bonfoco, E., Zhivotovsky, B.,Orrenius, S., Lipton, S. A. and Nicotera, P. (1995) Glutamate-inducedneuronal death: a succession of necrosis or apoptosisdepending on mitochondrial function. Neuron 15, 961-973. https://doi.org/10.1016/0896-6273(95)90186-8
  4. Antonawich, F. J., Federoff, H. J. and Davis, J. N. (1999) BCL-2transduction, using a herpes simplex virus amplicon, protectshippocampal neurons from transient global ischemia. Exp.Neurol. 156, 130-137. https://doi.org/10.1006/exnr.1998.7004
  5. Arai, K., Nishiyama, N., Matsuki, N. and Ikegaya, Y. (2001)Neuroprotective effects of lipoxygenase inhibitors againstischemic injury in rat hippocampal slice cultures. Brain Res.904,167-172. https://doi.org/10.1016/S0006-8993(01)02491-X
  6. Atlante, A., Valenti, D., Gagliardi, S. and Passarella, S. (2000) Asensitive method to assay the xanthine oxidase activity inprimary cultures of cerebellar granule cells. Brain Res. Protoc.6, 1-5. https://doi.org/10.1016/S1385-299X(00)00030-1
  7. Au, A. M., Chan, P. H. and Fishman, R. A. (1985) Stimulation ofphospholipase A2 activity by oxygen-derived free radicals inisolated brain capillaries. J. Cell. Biochem. 27, 449-53. https://doi.org/10.1002/jcb.240270413
  8. Baeuerle, P. A. and Baltimore, D. (1996) NF-kappa B: ten yearsafter. Cell 87, 13-20. https://doi.org/10.1016/S0092-8674(00)81318-5
  9. Barone, F. C., Irving, E. A., Ray, A. M., Lee, J. C., Kassis, S., Kumar, S., Badger, A. M., White, R. F., McVey, M. J., Legos, J. J., Erhardt, J. A., Nelson, A. H., Ohlstein, E. H., Hunter, A J., Ward, K., Smith, B. R., Adams, J. L. and Parsons, A. A. (2001) SB 239063, a Second-Generation p38 Mitogen-Activated Protein Kinase Inhibitor, Reduces Brain Injury and Neurological Deficits in Cerebral Focal Ischemia. J. Pharmacol. Exp. Ther. 296, 312-321.
  10. Beck, T., Lindholm, D., Castren, E. and Wree, A. (1994) Brain-derivedneurotrophic factor protects against ischemic celldamage in rat hippocampus. J. Cereb. Blood Flow Metab. 14,689-692. https://doi.org/10.1038/jcbfm.1994.86
  11. Beckman, J. S. (1996) Oxidative damage and tyrosine nitrationfrom peroxynitrite. Chem. Res. Toxicol. 9, 836-844. https://doi.org/10.1021/tx9501445
  12. Benveniste, H., Drejer, J., Schousboe, A. and Diemer, N. H. (1984) Elevation of the extracellular concentrations of glutamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by intracerebral mecrodialysis. J. Neurochem. 43, 1369-1374. https://doi.org/10.1111/j.1471-4159.1984.tb05396.x
  13. Bonventre, J. V. (1997) Roles of phospholipases A2 in brain celland tissue injury associated with ischemia and excitotoxicity. J.Lipid Mediat. Cell Signal. 16, 199-208. https://doi.org/10.1016/S0929-7855(97)00014-X
  14. Bonventre, J. V., Huang, Z., Taheri, M. R., O'Leary, E., Li, E.,Moskowitz, M. A. and Sapirstein, A (1997) Reduced fertilityand postischaemic brain injury in mice deficient in cytosolicphospholipase $A_2$. Nature 390, 622-625. https://doi.org/10.1038/37635
  15. Bredesen, D. E. (1994) Neuronal apoptosis: Genetic andbiochemical modulation, in Apoptosis II: The Molecular Basisof Apoptosis in desease, Tomei, L. D. and Cope, F. O. (eds.),pp. 397-421, Cold Spring Harbor Laboratory Press, Plainview,New York.
  16. Brookes, P. S., Bolanos, J. P. and Heales, S. J. (1999) Theassumption that nitric oxide inhibits mitochondrial ATP synthesis is correct. FEBS Lett. 446, 261-263. https://doi.org/10.1016/S0014-5793(99)00217-3
  17. Buchan, A., Li, H. and Pulsinelli, W. A. (1991) The N-methyl-D-aspartate antagonist, MK-801, fails to protect against neuronaldamage caused by transient, severe forebrain ischemia in adultrats. J. Neurosci. 11, 1049-1056. https://doi.org/10.1523/JNEUROSCI.11-04-01049.1991
  18. Buchan, A. M., Xue, D., Huang, Z. G., Smith, K. H. and Lesiuk, H. (1991) Delayed AMPA receptor blockade reduces cerebral infarction induced by focal ischemia. Neuroreport 2, 473-476. https://doi.org/10.1097/00001756-199108000-00016
  19. Budd, S. L. and Nicholls, D. G. (1998) Mitochondria in the lifeand death of neurons. Essays. Biochem 33, 43-52. https://doi.org/10.1042/bse0330043
  20. Cao, W., Carney, J. M., Duchon, A, Floyd, R. A. and Chevion,M. (1988) Oxygen free radical involvement in ischemia andreperfusion injury to brain. Neurosci. Lett. 88, 233-238. https://doi.org/10.1016/0304-3940(88)90132-2
  21. Carafoli, E. (1991) Calcium pump of the plasma membrane.Physiol. Rev. 71, 129-153. https://doi.org/10.1152/physrev.1991.71.1.129
  22. Carafoli, E. and Molinari, M. (1998) Calpain: a protease in searchof a function? Biochem. Biophys. Res. Commun. 247, 193-203. https://doi.org/10.1006/bbrc.1998.8378
  23. Cassina, A. and Radi, R. (1996) Differential inhibitory action of nitric oxide and peroxynitrite on mitochondrial electron transport. Arch. Biochem. Biophys. 328, 309-16. https://doi.org/10.1006/abbi.1996.0178
  24. Chan, P. H. (1996) Role of oxidants in ischemic brain damage.Stroke 27, 1124-1129. https://doi.org/10.1161/01.STR.27.6.1124
  25. Chao, D. T. and Korsmeyer, S. J. (1998) BCL-2 family: regulatorsof cell death. Annu. Rev. Immunol. 16, 395-419. https://doi.org/10.1146/annurev.immunol.16.1.395
  26. Chaniaut-Marlangue, C. and Ben-Ari, Y. (1995) A cautionary note on the use of the TUNEL stain to determine apoptosis. Neuroreport 7,61-64. https://doi.org/10.1097/00001756-199512000-00014
  27. Cheema, Z. F., Wade, S. B., Sata, M., Walsh, K., Sohrabji, F. andMiranda, R. C. (1999) Fas/Apo [apoptosis ]-1 and associatedproteins in the differentiating cerebral cortex: induction ofcaspase-dependent cell death and activation of NF-kappaB. J.Neurosci. 19, 1754-1770. https://doi.org/10.1523/JNEUROSCI.19-05-01754.1999
  28. Chen, J., Nagayama, T., Jin, K., Stetler, R. A., Zhu, R. L., Graharn, S. H. and Simon, R. P. (1998) Induction of caspase-3- like protease may mediate delayed neuronal death in the hippocampus after transient cerebral ischemia. J. Neurosci. 18, 4914-4928. https://doi.org/10.1523/JNEUROSCI.18-13-04914.1998
  29. Chiu, A. Y., Chen, E. W. and Loera, S. (1994) Distinctneurotrophic responses of axotomized motor neurons to BDNFand CNTF in adult rats. Neuroreport 5, 693-696. https://doi.org/10.1097/00001756-199402000-00008
  30. Choi, D. W. (1987) Ionic dependence of glutamate neurotoxicity.J. Neurosci. 7, 369-379. https://doi.org/10.1523/JNEUROSCI.07-02-00369.1987
  31. Choi, D. W. (2001) Excitotoxicity, apoptosis, and ischemic stroke.J. Biochem. Mol. Biol. 34, 8-14.
  32. Chum, S. B., Limbrick, D., Sombati, S. and Delorenzo, R. J.(1995) Excitotoxic activation of the NMDA receptor results ininhibition of calcium/calmodulin kinase II activity in culturedhippocampal neurons. J. Neurosci. 15, 3200-3214. https://doi.org/10.1523/JNEUROSCI.15-04-03200.1995
  33. Clapp, L. E., Kiette, K. L., DeCoster, M. A., Bemton, E., Petras,J. M., Dave, J. R., Laskosky, M. S., Smallridge, R. C. andTortella, F. C. (1995) Phospholipase A2-induced neurotoxicityin vitro and in vivo in rats. Brain Res. 693, 101-111. https://doi.org/10.1016/0006-8993(95)00720-B
  34. Cohen, A., Bray, G. M. and Aguayo, A. J. (1994) Neurotrophin-4/5 (NT-4/5) increases adult rat retinal ganglion cell survival andneurite outgrowth in vitro. J. Neurobiol. 25, 953-959. https://doi.org/10.1002/neu.480250805
  35. Colbourne, F., Sutherland, G. R. and Auer, R. N. (1999) Electronmicroscopic evidence against apoptosis as the mechanism ofneuronal death in global ischemia. J. Neurosci. 19, 4200-4210. https://doi.org/10.1523/JNEUROSCI.19-11-04200.1999
  36. Cole, T. B., Robbins, C. A., Wenzel, H. J., Schwartzkroin, P. A. and Palmiter, R. D. (2000) Seizures and neuronal damage in mice lacking vesicular zinc. Epilepsy Res. 39, 153-169. https://doi.org/10.1016/S0920-1211(99)00121-7
  37. Collaco-Moraes, Y., Aspey, B., Hanison, M. and de Belleroche, J.(1996) Cyclo-oxygenase-2 messenger RNA induction in focalcerebral ischemia. J. Cereb. Blood Flow Metab. 16, 1366-1372. https://doi.org/10.1097/00004647-199611000-00035
  38. Colvin, R. A., Davis, N., Nipper, R. W. and Carter, P. A. (2000) Zinc transport in the brain: routes of zinc influx and efflux in neurons. J. Nutr. 130, 1484S-1487S. https://doi.org/10.1093/jn/130.5.1484S
  39. Cross, T. G., Scheel-Toellner, D., Henriquez, N. V., Deacon, E., Salmon, M. and Lord, J. M. (2000) Serine/threonine protein kinases and apoptosis. Exp. Cell Res. 256, 34-41. https://doi.org/10.1006/excr.2000.4836
  40. Dalkara, T., Yoshida, T., Irikura, K. and Moskowitz, M. A. (1994) Dual role of nitric oxide in focal cerebral ischemia. Neuropharmacology 33, 1447-1452. https://doi.org/10.1016/0028-3908(94)90048-5
  41. Darzynkiewicz, Z., Bruno, S., Del Bino, G., Gorczyca, W., Hotz, M. A., Lassota, P. and Traganos, F. (1992) Features of apoptotic cells measured by flow cytometry. Cytometry 13, 795-808. https://doi.org/10.1002/cyto.990130802
  42. Davies, A. M. (1994) The role of neurotrophins in the developingnervous system. J. Neurobiol. 25, 1334-1348. https://doi.org/10.1002/neu.480251103
  43. Dawson, T. M., Dawson, V. L. and Snyder, S. H. (1992) A novelneuronal messenger molecule in brain: the free radical, nitricoxide. Ann. Neurol. 32, 297-311. https://doi.org/10.1002/ana.410320302
  44. Dawson, V. L., Dawson, T. M., Bartley, D. A., Uhl, G. R. andSnyder, S. H. (1993) Mechanisms of nitric oxide-mediatedneurotoxicity in primary brain cultures. J. Neurosci. 13, 2651-2661. https://doi.org/10.1523/JNEUROSCI.13-06-02651.1993
  45. Deibel, M. A., Ehmann, W. D. and Markesbery, W. R. (1996) Copper, iron, and zinc imbalances in severely degenerated brain regions in Alzheimer's disease: possible relation to oxidative stress. J. Neurol. Sci. 143, 137-142. https://doi.org/10.1016/S0022-510X(96)00203-1
  46. Desagher, S. and Martinou, J. C. (2000) Mitochondria as thecentral control point of apoptosis. Trends. Cell Biol. 10, 369-377. https://doi.org/10.1016/S0962-8924(00)01803-1
  47. Ding, D., Moskowitz, S. I., Li, R., Lee, S. B., Esteban, M.,Tomaselli, K., Chan, J. and Bergold, P. J. (2000) Acidosisinduces necrosis and apoptosis of cultured hippocampalneurons. Exp. Neurol. 162, 1-12. https://doi.org/10.1006/exnr.2000.7226
  48. Dubinsky, J. M. and Levi, Y. (1998) Calcium-induced activation ofthe mitochondrial permeability transition in hippocampalneurons. J. Neurosci. Res. 53, 728-741. https://doi.org/10.1002/(SICI)1097-4547(19980915)53:6<728::AID-JNR10>3.0.CO;2-U
  49. Dugan, L. L., Sensi, S. L., Canzoniero, L. M., Handran, S. D.,Rothman, S. M., Lin, T. S., Goldberg, M. P. and Choi, D. W.(1995) Mitochondrial production of reactive oxygen species incortical neurons following exposure to N-methyl-D-aspartate. J.Neurosci. 15, 6377-6388. https://doi.org/10.1523/JNEUROSCI.15-10-06377.1995
  50. Dumuis, A., Pin, J. P., Oomagari, K., Sebben, M. and Bockaert, J. (1990) Arachidonic acid released from striatal neurons by joint stimulation of ionotropic and metabotropic quisqualate receptors. Nature 347, 182-184. https://doi.org/10.1038/347182a0
  51. Dykens, J. A. (1994) Isolated cerebral and cerebellar mitochondriaproduce free radicals when exposed to elevated $CA^{2+}\;and\;Na^+$: implications for neurodegeneration. J. Neurochem. 63, 584-591. https://doi.org/10.1046/j.1471-4159.1994.63020584.x
  52. Earnshaw, W. C., Martins, L. M. and Kaufmann, S. H. (1999) Mammalian caspases: structure, activation, substrates, and functions during apoptosis. Annu. Rev. Biochem. 68, 383-424. https://doi.org/10.1146/annurev.biochem.68.1.383
  53. Ellison, G. (1995) The N-methyl-D-aspartate antagonistsphencyclidine, ketamine and dizocilpine as both behavioral andanatomical models of the dementias. Brain Res. Rev. 20, 250-267. https://doi.org/10.1016/0165-0173(94)00014-G
  54. Enari, M., Sakahira, H., Yokoyama, H., Okawa, K., Iwamatsu, A. and Nagata, S. (1998) A caspase-activated DNase that degradesDNA during apoptosis, and its inhibitor ICAD. Nature 391, 43-50. https://doi.org/10.1038/34112
  55. Enright, H., Hebbel, R. P. and Nath, K. A. (1994)Intemucleosomal cleavage of DNA as the sole criterion forapoptosis may be artifactual. J. Lab. Clin. Med. 124, 63-68.
  56. Faddis, B. T., Hasbani, M. J. and Goldberg, M. P. (1997) Calpainactivation contributes to dendritic remodeling after briefexcitotoxic injury in vitro. J. Neurosci. 17,951-959. https://doi.org/10.1523/JNEUROSCI.17-03-00951.1997
  57. Felderhoff-Mueser, U., Taylor, D. L., Greenwood, K., Kozma, M.,Stibenz, D., Joashi, U. C., Edwards, A. D. and Mehmet, H.(2000) Fas/CD95/ APO-1 can function as a death receptor forneuronal cells in vitro and in vivo and is upregulated followingcerebral hypoxic-ischemic injury to the developing rat brain.Brain Pathol. 10, 17-29. https://doi.org/10.1111/j.1750-3639.2000.tb00239.x
  58. Femandez-Schanchez, M. T. and Novelli A. (1993) Basicfibroblast growth factor protects cerebellar neurons in primaryculture from NMDA and non-NMDA receptor mediatedneurotoxicity. FEBS Lett. 335, 124-131. 1993. https://doi.org/10.1016/0014-5793(93)80453-2
  59. Fix, A. S., Hom, J. W., Wightman, K. A., Jolmson, C. A., Long,G. G., Storts, R W., Farber, N., Wozniak, D. F. and Olney, J.W. (1993) Neuronal vacuolization and necrosis induced by thenoncompetItIve N-methyl-D-aspartate (NMDA) antagonistMK(+)801 (dizocilpine maleate): a light and electronmicroscopic evaluation of the rat retrosplenial cortex. Exp.Neurol. 123, 204-215. https://doi.org/10.1006/exnr.1993.1153
  60. Frederickson, C. J. and Moncrieff, D. W. (1994) Zinc-containingneurons. Biol. Signals 3, 127-139. https://doi.org/10.1159/000109536
  61. Freund, W. D. and Reddig, S. (1994)$AMPA/Zn(^{2+})$-induced neurotoxicity in rat primary cortical cultures: involvement of L-type calcium channels. Brain Res. 654, 257-264. https://doi.org/10.1016/0006-8993(94)90487-1
  62. Friedman, B., Kleinfeld, D., Ip, N. Y., Verge, V. M., Moulton, R.,Boland, P., Zlotchenko, E., Lindsay, R. M. and Liu, L. (1995)BDNF and NT-4/5 exert neurotrophic influences on injuredadult spinal motor neurons. J. Neurosci. 15, 1044-1056. https://doi.org/10.1523/JNEUROSCI.15-02-01044.1995
  63. Fujimura, M., Morita-Fujimura, Y., Murakami, K., Kawase, M.and Chan, P. H. (1998) Cytosolic redistribution of cytochromec after transient focal cerebral ischemia in rats. J. Cereb. BloodFlow Metab. 18, 1239-1247. https://doi.org/10.1097/00004647-199811000-00010
  64. Fukunaga, K., Soderling, T. R. and Miyamoto, E. (1992)Activation of $Ca^{2+}$/calmodulin-dependent protein kinase II and protein kinase C by glutamate in cultured rat hippocampalneurons. J. BioI. Chem. 267, 22527-22533.
  65. Furlong, I. J., Ascaso, R., Lopez, R. A. and Collins, M. K. (1997)Intracellular acidification induces apoptosis by stimulating ICE-likeprotease activity. J. Cell Sci. 110, 653-661.
  66. Gavrieli, Y., Sherman, Y. and Ben-Sasson, S. A. (1992)Identification of programmed cell death in situ via specificlabeling of nuclear DNA fragmentation. J. Cell BioI. 119, 493-501. https://doi.org/10.1083/jcb.119.3.493
  67. Ghatan, S., Lamer, S., Kinoshita, Y., Hetman, M., Patel, L., Xia,Z., Youle, R J. and Morrison, R S. (2000) p38 MAP kinasemediates bax translocation in nitric oxide-induced apoptosis inneurons. J. Cell Biol. 150, 335-347. https://doi.org/10.1083/jcb.150.2.335
  68. Gill, D. L., Ghosh, T. K. and Mullaney, J. M. (1989) Calciumsignaling mechanisms in endoplasmic reticulum activated byinositol 1.4.5-trisphosphate and GTP. Cell Calcium 10, 363-374. https://doi.org/10.1016/0143-4160(89)90062-6
  69. Giulivi, C., Boveris, A. and Cadenas, E. (1995) Hydroxyl radicalgeneration during mitochondrial electron transfer and the formation of 8-hydroxydesoxyguanosine in mitochondrial DNA. Arch. Biochem. Biophys. 316,909-16. https://doi.org/10.1006/abbi.1995.1122
  70. Goldberg, M. P., Weiss, J. H., Pham, P. C. and Choi, D. W. (1987)N-methyl-D-aspartate receptors mediate hypoxic neuronalinjury in cortical culture. J. Pharmac. Exp. Ther. 243, 784-791.
  71. Goodman, Y. and Mattson, M. P. (1996) Ceramide protectshippocampal neurons against excitotoxic and oxidative insults,and amyloid beta-peptide toxicity. J. Neurochem. 66, 869-872. https://doi.org/10.1046/j.1471-4159.1996.66020869.x
  72. Gorter,J. A., Petrozzino, J. J., Aronica, E. M., Rosenbaum, D. M.,Opitz, T., Bennett, M.V., Connor, J. A. and Zukin, R. S.(1997) Global ischemia induces downregulation of Glur2mRNA and increases AMPA receptor-mediated $Ca^{2+}$ influx in hippocampal CA1 neurons of gerbil. J. Neurosci. 17, 6179-6188. https://doi.org/10.1523/JNEUROSCI.17-16-06179.1997
  73. Gottron, F. J., Ying, H. S. and Choi, D. W. (1997) Caspase inhibition selectively reduces the apoptotic component of oxygen-glucose deprivation-induced cortical neuronal cell death. Mol. Cell Neurosci. 9, 159-169. https://doi.org/10.1006/mcne.1997.0618
  74. Grasl-Kraupp, B., Ruttkay-Nedecky, B., Koudelka, H., Bukowska,K., Bursch, W. and Schulte-Hermann, R. (1995) In situdetection of fragmented DNA (TUNEL assay) fails todiscriminate among apoptosis, necrosis, and autolytic celldeath: a cautionary note. Hepatology 21, 1465-1468.
  75. Greenberg, J. H., Uematsu, D., Araki, N., Hickey, W. F. andReivich, M. (1990) Cytosolic free calcium during focal cerebralischemia and the effects of nimodipine on calcium andhistologic damage. Stroke 21, IV72-IV77. https://doi.org/10.1161/01.STR.21.1.72
  76. Greenlund, L. J., Deckwerth, T. L. and Johnson, E. M. (1995)Superoxide dismutase delays neuronal apoptosis: a role forreactive oxygen species in programmed neuronal death. Neuron14, 303-315. https://doi.org/10.1016/0896-6273(95)90287-2
  77. Grilli, M., Pizzi, M., Memo, M. and Spano, P. F. (1996)Neuroprotection by aspirin and sodium salicylate throughblockade of NF-kB activation. Science 274, 1383-1385. https://doi.org/10.1126/science.274.5291.1383
  78. Gross, A., Jockel, J., Wei, M. C. and Korsmeyer, S. J. (1998)Enforced dimerization of BAX results in its translocation,mitochondrial dysfunction and apoptosis. EMBO J. 17, 3878-3885. https://doi.org/10.1093/emboj/17.14.3878
  79. Gunter, K. K. and Gunter, T. E. (1994) Transport of calcium bymitochondria. J. Bioenerg. Biomembr. 26,471-485. https://doi.org/10.1007/BF00762732
  80. Gunter, T. E. and Pfeiffer, D. R. (1990) Mechanisms by whichmitochondria transport calcium. Am. J. Physiol. 258, C755-C786. https://doi.org/10.1152/ajpcell.1990.258.5.C755
  81. Gwag, B. J., Ryu, B. R., Lee, Y. A., Chang, S-Y., Noh, J-H., Chung, J-M. and Yoon, S-H. (2000) Multiple neuroprotective effects of sulfasalazine against NMDA, free radicals and zinc, presented at 30th annual meeting of society for neuroscience, New Orleans.
  82. Gwag, B. J., Canzoniero, L. M., Sensi, S. L., DeMaro, J. A., Koh,J. Y., Goldberg, M. P., Jacquin, M. and Choi, D. W. (1999)Calcium ionophores can induce either apoptosis or necrosis incultured cortical neurons. Neuroscience 90, 1339-1348. https://doi.org/10.1016/S0306-4522(98)00508-9
  83. Gwag, B. J., Koh, J. Y., Chen, M. M., Dugan, L. L., Behrens, M.M., Lobner, D. and Choi, D. W. (1995) BDNF or IGF-Ipotentiates free radical-mediated injury in cortical cell cultures.Neuroreport 7, 93-96. https://doi.org/10.1097/00001756-199512000-00022
  84. Gwag, B. J., Koh, J. Y., DeMaro, J. A., Ying, H. S., Jacquin, M.and Choi, D. W. (1997) Slowly triggered excitotoxicity occursby necrosis in cortical cultures. Neuroscience 77, 393-401. https://doi.org/10.1016/S0306-4522(96)00473-3
  85. Gwag, B. J., Lobner, D., Koh, J. Y., Wie, M. B. and Choi. D. W. (1995) Blockade of glutamate receptors unmasks neuronalapoptosis after oxygen-glucose deprivation in vitro.Neuroscience 68, 615-619. https://doi.org/10.1016/0306-4522(95)00232-8
  86. Haber, F. and Weiss, J. (1934) The catalytic decomposition of hydrogen peroxide by iron salts, Proc. R. Soc., London A 147, 332. https://doi.org/10.1098/rspa.1934.0221
  87. Hajimohammadreza, I., Probert, A. W., Coughenour, L. L., Borosky, S. A., Marcoux, F. W., Boxer, P. A. and Wang, K. K. (1995) A specific inhibitor of calcium/calmodulin-dependent protein kinase-II provides neuroprotection against NMDA- and hypoxiaJhypoglycemia-induced cell death. J. Neurosci. 15, 4093-4101. https://doi.org/10.1523/JNEUROSCI.15-05-04093.1995
  88. Hanson, S. K., Grotta, J. C., Waxham, M. N., Aronowski, J. and Ostrow, P. (1994) CalciUm/calmodulin-dependent protein kinase II activity in focal ischemia with reperfusion in rats. Stroke 25, 466-473. https://doi.org/10.1161/01.STR.25.2.466
  89. Hasegawa, K., Yoshioka, H., Sawada, T. and Nishikawa, H. (1993)Direct measurement of free radicals in the neonatal mousebrain subjected to hypoxia: an electron spin resonancespectroscopic study. Brain. Res. 607, 161-166. https://doi.org/10.1016/0006-8993(93)91502-J
  90. Hefti, F. (1986) Nerve growth factor (NGF) promotes survival ofseptal cholinergic neurons after fimbrial transections. J.Neurosci. 6, 2155-2162. https://doi.org/10.1523/JNEUROSCI.06-08-02155.1986
  91. Herdegen, T., Claret, F. X., Kallunki, T., Martin-Villalba, A.,Winter, C., Hunter, T. and Karin, M. (1998) Lasting N-terminalphosphorylation of c-Jun and activation of c-Jun N-terminalkinases after neuronal injury. J. Neurosci. 18,5124-5135. https://doi.org/10.1523/JNEUROSCI.18-14-05124.1998
  92. Hewett, S. J., Uliasz, T. F., Vidwans, A. S. and Hewett, J. A.(2000) Cyclooxygenase-2 contributes to N-methyl-D-aspartatemediatedneuronal cell death in primary cortical cell culture. J.Phamwcol. Exp. Ther. 293, 417-425.
  93. Hockenbery, D. M., Oltvai, Z. N., Yin, X. M., Milliman, C. L.and Korsmeyer, S. J. (1993) Bcl-2 functions in an antioxidantpathway to prevent apoptosis. Cell 75, 241-251. https://doi.org/10.1016/0092-8674(93)80066-N
  94. Hollmann, M. and Heinemann, S. (1994) Cloned glutamatereceptors. Annu. Rev. Neurosci. 17,31-108. https://doi.org/10.1146/annurev.ne.17.030194.000335
  95. Hong, S. C., Goto, Y., Lanzino, G., Soleau, S., Kassell, N. F. andLee, K. S. (1994) Neuroprotection with a calpain inhibitor in amodel of focal cerebral ischemia. Stroke 25, 663-669. https://doi.org/10.1161/01.STR.25.3.663
  96. Hsu, Y. T., Wolter, K. G. and Youle, R. J. (1997) Cytosol-to-membrane redistribution of Bax and Bcl-X(L) during apoptosis. Proc. Natl. Acad. Sci. USA 94, 3668-3672. https://doi.org/10.1073/pnas.94.8.3668
  97. Hwang, J. Y., Kim, Y. H., Ahn, Y. H., Wie, M. B. and Koh, J. Y.(1999) N-Methyl-D-aspartate receptor blockade inducesneuronal apoptosis in cortical culture. Exp. Neurol. 159, 124-130. https://doi.org/10.1006/exnr.1999.7126
  98. Iadecola, C., Niwa, K., Nogawa, S., Zhao, X., Nagayama, M., Araki, E., Morham, S. and Ross, M. E. (2001) Reduced susceptibility to ischemic brain injury and N-methyl-Daspartate- mediated neurotoxicity in cyclooxygenase-2-deficient mice. Proc. Natl. Acad. Sci. USA 98, 1294-1299. https://doi.org/10.1073/pnas.98.3.1294
  99. Iadecola, C., Zhang, F. and Xu, X. (1995) Inhibition of induciblenitric oxide synthase ameliorates cerebral ischemic damage.Am. J. Physiol. 268, R286-R292.
  100. Iadecola, C., Zhang, F., Xu, S., Casey, R. and Ross, M. E. (1995)Inducible nitric oxide synthase gene expression in brainfollowing cerebral ischemia. J. Cereb. Blood Flow Metab. 15,378-384. https://doi.org/10.1038/jcbfm.1995.47
  101. Ikonomidou, C., Bosch, F., Miksa, M., Bittigau, P., Vockler, J.,Dikranian, K, Tenkova, T. I., Stefovska, V., Turski, L. and Olney, J. W. (1999) Blockade of NMDA receptors andapoptotic neurodegeneration in the developing brain. Science283,70-74. https://doi.org/10.1126/science.283.5398.70
  102. Ip, Y. T. and Davis, R. J. (1998) Signal transduction by the c-JunN-terminal kinase (JNK)--from inflammation to development.Curr. Opin. Cell BioI. 10, 205-219. https://doi.org/10.1016/S0955-0674(98)80143-9
  103. Irving, E. A., Barone, F. C., Reith, A. D., Hadingham, S. J. and Parsons, A. A. (2000) Differential activation of MAPK/ERK and p38/SAPK in neurons and glia following focal cerebral ischemia in the rat. Mol. Brain Res. 77, 65-75. https://doi.org/10.1016/S0169-328X(00)00043-7
  104. Isenmann, S., Stoll, G., Schroeter, M., Krajewski, S., Reed, J. C.and Bahr, M. (1998) Differential regulation of Bax, Bcl-2, andBcl-X proteins in focal cortical ischemia in the rat. BrainPathol. 8, 49-62. https://doi.org/10.1111/j.1750-3639.1998.tb00134.x
  105. Ishikawa, Y., Ikeuchi, T. and Hatanaka, H. (2000) Brain-derivedneurotrophic factor accelerates nitric oxide donor-inducedapoptosis of cultured cortical neurons. J. Neurochem. 75, 494-502. https://doi.org/10.1046/j.1471-4159.2000.0750494.x
  106. Jin, K., Graham, S. H., Nagayama, T., Goldsmith, P. C., Greenberg, D. A., Zhou, A. and Simon, R. P. (2001) Altered Expression of the Neuropeptide-Processing Enzyme Carboxypeptidase E in the Rat Brain After Global Ischemia. J. Cereb. Blood Flow Metab. 21, 1422-1429. https://doi.org/10.1097/00004647-200112000-00006
  107. Kahn, R. A., Panah, M. and Weinberger, J. (1997) Modulation ofischemic excitatory neurotransmitter and gamma-arninobutyricacid release during global temporary cerebral ischemia byselective neuronal nitric oxide synthase inhibition. Anesth.Analg. 84,997-1003. https://doi.org/10.1097/00000539-199705000-00009
  108. Kawasaki, H., Morooka, T., Shimohama, S., Kimura, J., Hirano, T., Gotoh, Y. and Nishida, E. (1997) Activation and involvement of p38 mitogen-activated protein kinase in glutamate-induced apoptosis in rat cerebellar granule cells. J. BioI. Chem. 272, 18518-18521. https://doi.org/10.1074/jbc.272.30.18518
  109. Kerr, J. F., Wyllie, A. H. and Currie, A. R. (1972) Apoptosis: abasic biological phenomenon with wide-ranging implications intissue kinetics. Br. J. Cancer 26, 239-257. https://doi.org/10.1038/bjc.1972.33
  110. Khaled, A. R., Kim, K., Hofmeister, R., Muegge, K. and Durum, S. K. (1999) Withdrawal of IL-7 induces Bax translocation from cytosol to mitochondria through a rise in intracellular pH. Proc. Natl. Acad. Sci. USA 96, 14476-14481. https://doi.org/10.1073/pnas.96.25.14476
  111. Khaled, A. R. and Durum, S. K. (2001) From cytosol tomitochondria: The Bax translocation story. J. Biochem. Mol.BioI. 34, 391-394.
  112. Kharbanda, S., Saxena, S., Yoshida, K., Pandey, P., Kaneki, M., Wang, Q., Cheng, K., Chen, Y. N., Campbell, A, Sudha, T., Yuan, Z. M., Narula, J., Weichselbaurn, R., Nalin, C. and Kufe, D. (2000) Translocation of SAPK/JNK to mitochondria and interaction with Bcl-x(L) in response to DNA damage. J. Biol. Chem. 275, 322-327. https://doi.org/10.1074/jbc.275.1.322
  113. Khodorov, B., Pinelis, V., Vergun, O., Storozhevykh, T. andVinskaya, N. (1996) Mitochondrial deenergization underliesneuronal calcium overload following a prolonged glutamatechallenge. FEBS Lett. 397, 230-234. https://doi.org/10.1016/S0014-5793(96)01139-8
  114. Kim, D. K., Rordorf, G., Nemenoff, R. A., Koroshetz, W. J. andBonventre, J. V. (1995) Glutamate stably enhances the activityof two cytosolic forms of phospholipase A2 in brain corticalcultures. Biochem. J. 310, 83-90. https://doi.org/10.1042/bj3100083
  115. Kim, D. Y., Kim, S. H., Choi, H. B., Min, C. and Gwag, B. J.(2001) High abundance of GluRI mRNA and reduced Q/Rediting of GluR2 mRNA in individual NADPH-diaphorase neurons. Mol. Cell Neurosci. 17, 1025-1033. https://doi.org/10.1006/mcne.2001.0988
  116. Kim, E. Y., Woo, H. G., Lee, S. H. and Gwag, B. J. (1999) Acausative activation of cyclooxygenase for zinc-inducedgeneration of reactive oxygen species in cortical neurons,presented at 29th annual meeting of society for neuroscience,Florida.
  117. Kim, E. Y., Koh, J. Y., Kim, Y. H., Sohn, S., Joe, E. and Gwag,B. J. (1999) $Zn^{2+}$ entry produces oxidative neuronal necrosis in cortical cell cultures. Eur. J. Neurosci. 11, 327-334. https://doi.org/10.1046/j.1460-9568.1999.00437.x
  118. Kim, Y. H., Kim, E. Y., Gwag, B. J., Sohn, S. and Koh, J. Y.(1999) Zinc-induced cortical neuronal death with features ofapoptosis and necrosis: mediation by free radicals.Neuroscience 89, 175-82. https://doi.org/10.1016/S0306-4522(98)00313-3
  119. Knowles, R. G. and Moncada, S. (1994) Nitric oxide syntheses inmammals. Biochem. J. 298, 249-258. https://doi.org/10.1042/bj2980249
  120. Ko, H. W., Han, K. S., Kim, E. Y., Ryu, B. R., Yoon, W. J., Jung, Y. K., Kim, S. U. and Gwag, B. J. (2000) Synergetic activation of p38 mitogen-activated protein kinase and caspase-3-like proteases for execution of calyculin A-induced apoptosis but not N-methyl-d-aspartate-induced necrosis in mouse cortical neurons. J. Neurochem. 74, 2455-2461. https://doi.org/10.1046/j.1471-4159.2000.0742455.x
  121. Ko, H. W., Park, K. Y., Kim, H., Han, P. L., Kim, Y. U., Gwag,B. J. and Choi, E. J. (1998) $Ca^{2+}$-mediated activation of c-Jun N-terminal kinase and nuclear factor kappa B by NMDA in cortical cell cultures. J. Neurochem. 71, 1390-1395. https://doi.org/10.1046/j.1471-4159.1998.71041390.x
  122. Koh, J. Y. and Choi, D.W. (1994) Zinc toxicity on culturedcortical neurons: involvement of N-methyl-D-aspartatereceptors. Neuroscience 60, 1049-1057. https://doi.org/10.1016/0306-4522(94)90282-8
  123. Koh, J. Y., Goldberg, M. P., Hartley, D. M. and Choi, D. W.(1990) Non-NMDA receptor-mediated neurotoxicity in corticalculture. J. Neurosci. 10, 693-705. https://doi.org/10.1523/JNEUROSCI.10-02-00693.1990
  124. Koh, J. Y., Gwag, B. J., Lobner, D. and Choi, D. W. (1995)Potentiated necrosis of cultured cortical neurons byneurotrophins [see comments]. Science 268, 573-575. https://doi.org/10.1126/science.7725105
  125. Koh, J. Y., Suh, S. W., Gwag, B. J., He, Y. Y., Hsu, C. Y. andChoi, D. W. (1996) The role of zinc in selective neuronal deathafter transient global cerebral ischemia. Science 272, 1013-1016. https://doi.org/10.1126/science.272.5264.1013
  126. Kondo, Y., Ogawa, N., Asanuma, M., Ora, Z. and Mori, A. (1995) Regional differences in late-onset iron deposition, ferritin, transferrin, astrocyte proliferation, and microglial activation after transient forebrain ischemia in rat brain. J. Cereb. Blood. Flow. Metab. 15, 216-26. https://doi.org/10.1038/jcbfm.1995.27
  127. Kontos, H. A. (1987) Oxygen radicals from arachidonatemetabolism in abnormal vascular responses. Am. Rev. Respir.Dis. 136, 474-477. https://doi.org/10.1164/ajrccm/136.2.474
  128. Kooy, N. W., Royall, J. A., Ischiropoulos, H. and Beckman, J. S.(1994) Peroxynitrite-mediated oxidation of dihydrorhodamine123. Free. Radic. BioI. Med. 16, 149-56. https://doi.org/10.1016/0891-5849(94)90138-4
  129. Krajewski, S., Krajewska, M., Ellerby, L. M., Welsh, K., Xie, Z., Deveraux, Q. L., Salvesen, G. S., Bredesen, D. E., Rosenthal, R. E., Fiskum, G. and Reed, J. C. (1999) Release of caspase-9 from mitochondria during neuronal apoptosis and cerebral ischemia. Proc. Natl. Acad. Sci. USA 96, 5752-5757. https://doi.org/10.1073/pnas.96.10.5752
  130. Krajewski, S., Mai, J. K., Krajewska, M., Sikorska, M.,Mossakowski, M. J. and Reed, J. C. (1995) Upregulation ofbax protein levels in neurons following cerebral ischemia. J.Neurosci. 15, 6364-6376. https://doi.org/10.1523/JNEUROSCI.15-10-06364.1995
  131. Kramer, R. M. and Sharp, J. D. (1997) Structure, function andregulation of $Ca^{2+}$-sensitive cytosolic phospholipase A2 (cPLA2). FEBS Lett. 410,49-53. https://doi.org/10.1016/S0014-5793(97)00322-0
  132. Krause, G. S., White, B. C., Aust, S. D., Nayini, N. R. andKumar, K. (1988) Brain cell death following ischemia andreperfusion: a proposed biochemical sequence. Crit. Care. Med.16, 714-726. https://doi.org/10.1097/00003246-198807000-00015
  133. Kroemer, G., Dallaporta, B. and Resche-Rigon, M. (1998) The mitochondrial death/life regulator in apoptosis and necrosis.Annu. Rev. Physiol. 60,619-642. https://doi.org/10.1146/annurev.physiol.60.1.619
  134. Krohn, A. J., Preis, E. and Prehn, J. H. (1998) Staurosporineinducedapoptosis of cultured rat hippocampal neurons involvescaspase-l-like proteases as upstream initiators and increasedproduction of superoxide as a main downstream effector. J.Neurosci. 18, 8186-8197. https://doi.org/10.1523/JNEUROSCI.18-20-08186.1998
  135. Kruman, I., Guo, Q. and Mattson, M. P (1998) Calcium andreactive oxygen species mediate staurosporine-inducedmitochondrial dysfunction and apoptosis in PC12 cells. J.Neurosci. Res. 51, 293-308. https://doi.org/10.1002/(SICI)1097-4547(19980201)51:3<293::AID-JNR3>3.0.CO;2-B
  136. Kummer, J. L., Rao, P. K. and Heidenreich, K. A. (1997)Apoptosis induced by withdrawal of trophic factors is mediatedby p38 mitogen-activated protein kinase. J. Bioi. Chem. 272,20490-20494. https://doi.org/10.1074/jbc.272.33.20490
  137. Lazarewicz, J. W., Wroblewski, J. T. and Costa, E. (1990) Nmethyl- D-aspartate-sensitive glutamate receptors induce calcium- mediated arachidonic acid release in primary cultures of cerebellar granule cells. J. Neurochem. 55, 1875-1881. https://doi.org/10.1111/j.1471-4159.1990.tb05771.x
  138. Le-Niculescu, H., Bonfoco, E., Kasuya, Y., Claret, F. X., Green, D. R. and Karin, M. (1999) Withdrawal of survival factors results in activation of the JNK pathway in neuronal cells leading to Fas ligand induction and cell death. Mol. Cell Biol. 19, 751-763. https://doi.org/10.1128/MCB.19.1.751
  139. Lee, J. Y., Cole, T. B., Palmiter, R. D. and Koh, J. Y. (2000) Accumulation of zinc in degenerating hippocampal neurons of ZnT3-null mice after seizures: evidence against synaptic vesicle origin. J. Neurosci. 20, RC79. https://doi.org/10.1523/JNEUROSCI.20-11-j0003.2000
  140. Lee, J. Y., Kim, Y. H. and Koh, J. Y. (2001) Protection bypyruvate against transient forebrain ischemia in rats. J.Neurosci. 21, RC171. https://doi.org/10.1523/JNEUROSCI.21-20-j0002.2001
  141. Lee, K. S., Frank, S., Vanderklish, P., Arai, A. and Lynch, G. (1991) Inhibition of proteolysis protects hippocampal neurons from ischemia. Proc. Natl. Acad. Sci. USA 88, 7233-7237. https://doi.org/10.1073/pnas.88.16.7233
  142. Li, Y., Chopp, M., Jiang, N., Zhang, Z. G. and Zaloga, C. (1995)Induction of DNA fragmentation after 10 to 120 minutes offocal cerebral ischemia in rats. Stroke 26, 1252-1257. https://doi.org/10.1161/01.STR.26.7.1252
  143. Li, Y., Sharov, V. G., Jiang, N., Zaloga,C., Sabbah, H. N. andChopp, M. (1995) Ultrastructural and light microscopicevidence of apoptosis after middle cerebral artery occlusion inthe rat. Am. J. Pathoi. 146, 1045-1051.
  144. Linnik, M. D., Zobrist, R. H. and Hatfield, M. D. (1993) Evidencesupporting a role for programmed cell death in focal cerebralischemia in rats. Stroke 24, 2002-2008. https://doi.org/10.1161/01.STR.24.12.2002
  145. Lipton, S. A., Choi, Y. B., Pan, Z. H., Lei, S. Z., Chen, H. S., Sucher, N. J., Loscalzo, J., Singel, D. J. and Stamler, J. S. (1993) A redox-based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitrosocompounds. Nature 364, 626-632. https://doi.org/10.1038/364626a0
  146. Liu, Z. Q., Kunimatsu, M., Yang, J. P., Ozaki, Y., Sasaki, M. andOkamoto, T. (1996) Proteolytic processing of nuclear factorkappa B by calpain in vitro. FEBS Lett. 385, 109-113. https://doi.org/10.1016/0014-5793(96)00360-2
  147. Luetjens, C. M., Bui, N. T., Sengpiel, B., Munstermann, G.,Poppe, M., Krohn, A. J., Bauerbach, E., Krieglstein. J. and Prehn, J. H. (2000) Delayed mitochondrial dysfunction in excitotoxic neuron death: cytochrome c release and a secondary increase in superoxide production. J Neurosci. 20, 5715-5723. https://doi.org/10.1523/JNEUROSCI.20-15-05715.2000
  148. Ma, J., Endres, M. and Moskowitz, M. A (1998) Synergisticeffects of caspase inhibitors and MK-801 in brain injury aftertransient focal cerebral ischemia in mice. Br. J. Phannacol.124, 756-762. https://doi.org/10.1038/sj.bjp.0701871
  149. MacManus, J. P., Buchan, A. M., Hill, I. E., Rasquinha, I. andPreston, E. (1993) Global ischemia can cause DNAfragmentation indicative of apoptosis in rat brain. Neurosci.Lett. 164, 89-92. https://doi.org/10.1016/0304-3940(93)90864-H
  150. Manev, H., Favaron, M., Siman, R., Guidotti, A and Costa, E.(1991) Glutamate neurotoxicity is independent of calpain Iinhibition in primary cultures of cerebellar granule cells. J.Neurochem. 57, 1288-1295. https://doi.org/10.1111/j.1471-4159.1991.tb08292.x
  151. Mansour-Robaey, S., Clarke, D. B., Wang, Y. C., Bray, G. M. andAguayo, A. J. (1994) Effects of ocular injury andadministration of brain-derived neurotrophic factor on survivaland regrowth ofaxotomized retinal ganglion cells. Proc. Natl.Acad. Sci. USA 91, 1632-1636. https://doi.org/10.1073/pnas.91.5.1632
  152. Maroney, A. C., Glicksman, M. A., Basma, A. N., Walton, K. M., Knight, E. J., Murphy, C. A., Bartlett, B. A., Finn, J. P., Angeles, T., Matsuda, Y., Neff, N. T. and Dionne, C. A. (1998) Motoneuron apoptosis is blocked by CEP-1347 (KT 7515), a novel inhibitor of the JNK signaling pathway. J. Neurosci. 18, 104-111. https://doi.org/10.1523/JNEUROSCI.18-01-00104.1998
  153. Martin-Villalba, A., Herr, I., Jeremias, I., Hahne, M., Brandt, R.,Vogel, J., Schenkel, J., Herdegen, T. and Debatin, K. M. (1999)CD95 ligand (Fas-L/APO-1L) and tumor necrosis factor-relatedapoptosis-inducing ligand mediate ischemia-induced apoptosisin neurons. J. Neurosci. 19, 3809-3817. https://doi.org/10.1523/JNEUROSCI.19-10-03809.1999
  154. Martin, D. P., Schmidt, R. E., DiStefano, P. S., Lowry, O. H.,Carter, J. G. and Johnson, E. M. (1988) Inhibitors of proteinsynthesis and RNA synthesis prevent neuronal death caused bynerve growth factor deprivation. J. Cell BioI. 106, 829-844. https://doi.org/10.1083/jcb.106.3.829
  155. Martinou, J. C., Dubois-Dauphin, M., Staple, J. K., Rodriguez, I.,Frankowski, H., Missotten, M., Albertini, P., Talabot, D.,Catsicas, S. and Pietra, C. (1994) Overexpression of BCL-2 intransgenic mice protects neurons from naturally occurring celldeath and experimental ischemia. Neuron 13, 10 17 -1030. https://doi.org/10.1016/0896-6273(94)90266-6
  156. Matsui, T., Nagafuji, T., Mori, T. and Asano, T. (1997) N omeganitro-L-arginine attenuates early ischemic neuronal damage ofprolonged focal cerebral ischemia and recirculation in rats.Neurol. Res. 19, 192-203. https://doi.org/10.1080/01616412.1997.11740795
  157. Matsushita, K., Wu, Y., Qiu, J., Lang-Lazdunski, L., Hirt, L.,Waeber, C., Hyman, B. T., Yuan, J. and Moskowitz, M. A(2000) Fas receptor and neuronal cell death after spinal cordischemia. J. Neurosci. 20, 6879-6887. https://doi.org/10.1523/JNEUROSCI.20-18-06879.2000
  158. Matsuyama, S., Llopis, J., Deveraux, Q. L., Tsien, R. Y. andReed, J. C. (2000) Changes in intramitochondrial and cytosolicpH: early events that modulate caspase activation duringapoptosis. Nat. Cell Biol. 2, 318-325. https://doi.org/10.1038/35014006
  159. Matsuyama, T., Hata, R., Yamamoto, Y., Tagaya, M., Akita, H.,Uno, H., Wanaka, A., Furuyama, J. and Sugita, M. (1995)Localization of Fas antigen mRNA induced in postischernicmurine forebrain by in situ hybridization. Mol. Brain Res. 34,166-172. https://doi.org/10.1016/0169-328X(95)00162-L
  160. Mattson, M. P., Goodman, Y., Luo, H., Fu, W. and Furukawa, K.(1997) Activation of NF-kappaB protects hippocampal neuronsagainst oxidative stress-induced apoptosis: evidence for induction of manganese superoxide dismutase and suppressionof peroxynitrite production and protein tyrosine nitration. J.Neurosci. Res. 49,681-697. https://doi.org/10.1002/(SICI)1097-4547(19970915)49:6<681::AID-JNR3>3.0.CO;2-3
  161. McCord, J. M., Roy, R. S. and Schaffer, S. W. (1985) Freeradicals and myocardial ischemia. The role of xanthine oxidase.Adv. Myocardial. 5, 183-189.
  162. Merrill, J. E., Murphy, S. P., Mitrovic, B., Mackenzie-Graham, A.,Dopp, J. C., Ding, M., Griscavage, J., Ignarro, L. J. andLowenstein, C. J. (1997) Inducible nitric oxide synthase andnitric oxide production by oligodendrocytes. J. Neurosci. Res.48, 372-384. https://doi.org/10.1002/(SICI)1097-4547(19970515)48:4<372::AID-JNR9>3.0.CO;2-8
  163. Merry, D. E. and Korsmeyer, S. J. (1997) Bcl-2 gene family in thenervous system. Annu. Rev. Neurosci. 20, 245-267. https://doi.org/10.1146/annurev.neuro.20.1.245
  164. Mey, J. and Thanos, S. (1993) Intravitreal injections ofneurotrophic factors support the survival ofaxotomized retinalganglion cells in adult rats in vivo. Brain Res. 602, 304-317. https://doi.org/10.1016/0006-8993(93)90695-J
  165. Middleton, G., Hamanoue, M., Enokido, Y., Wyatt, S., Pennica,D., Jaffray, E., Hay, R. T. and Davies, A. M. (2000) Cytokine-inducednuclear factor kappa B activation promotes the survivalof developing neurons. J Cell BioI. 148, 325-332. https://doi.org/10.1083/jcb.148.2.325
  166. Mielke, K. and Herdegen, T. (2000) JNK and p38 stress kinases-degenerative effectors of signal-transduction-cascades in the nervous system. Prog. Neurobiol. 61, 45-60. https://doi.org/10.1016/S0301-0082(99)00042-8
  167. Miettinen, S., Fusco, F. R., Yrjanheikki, J., Keinanen, R.,Hirvonen, T., Roivainen, R., Narhi, M., Hokfelt, T. andKoistinaho, J. (1997) Spreading depression and focal brainischemia induce cyclooxygenase-2 in cortical neurons throughN-methyl-D-aspartic acid-receptors and phospholipase A2.Proc. Natl. Acad. Sci. USA, 94, 6500-6505. https://doi.org/10.1073/pnas.94.12.6500
  168. Morioka, M., Fukunaga, K., Nagahiro, S., Kurino, M., Ushio, Y.and Miyamoto, E. (1995) Glutamate-induced loss of $Ca^{2+}$/calmodulin-dependent protein kinase II activity in cultured rathippocampal neurons. J. Neurochem. 64, 2132-2139. https://doi.org/10.1046/j.1471-4159.1995.64052132.x
  169. Murphy, S., Simmons, M. L., Agullo, L., Garcia, A., Feinstein, D.L., Galea, E., Reis, D. J., Minc-Golomb, D. and Schwartz, J. P.(1993) Synthesis of nitric oxide in CNS glial cells. Trends.Neurosci. 16, 323-328. https://doi.org/10.1016/0166-2236(93)90109-Y
  170. Nagata, S. (1997) Apoptosis by death factor. Cell 88, 355-365. https://doi.org/10.1016/S0092-8674(00)81874-7
  171. Namura, S., Iihara, K., Takami, S., Nagata, I., Kikuchi, H.,Matsushita, K., Moskowitz, M. A., Bonventre, J. V. andAlessandrini, A. (2001) Intravenous administration of MEKinhibitor U0126 affords brain protection against forebrainischemia and focal cerebral ischemia. Proc. Natl. Acad. Sci.USA 98, 11569-11574. https://doi.org/10.1073/pnas.181213498
  172. Namura, S., Zhu, J., Fink, K., Endres, M., Srinivasan, A.,Tomaselli, K. J., Yuan, J. and Moskowitz, M. A (1998)Activation and cleavage of caspase-3 in apoptosis induced byexperimental cerebral ischemia. J. Neurosci. 18, 3659-3668. https://doi.org/10.1523/JNEUROSCI.18-10-03659.1998
  173. Nanri, K., Montecot, C., Springhetti, V., Seylaz, J. and Pinard, E.(1998) The selective inhibitor of neuronal nitric oxide synthase,7-nitroindazole, reduces the delayed neuronal damage due toforebrain ischemia in rats. Stroke 29, 1248-1253. https://doi.org/10.1161/01.STR.29.6.1248
  174. Neumar, R. W., Hagle, S. M., DeGracia, D. J., Krause, G. S. andWhite, B. C. (1996) Brain mu-calpain autolysis during globalcerebral ischemia. J. Neurochem. 66,421-424. https://doi.org/10.1046/j.1471-4159.1996.66010421.x
  175. Nicholls, D. and Attwell, D. (1990) The release and uptake ofexcitatory amino acids. Trends. Pharmacol. Sci. 11, 462-468. https://doi.org/10.1016/0165-6147(90)90129-V
  176. Nicoletti, I., Migliorati, G., Pagliacci, M. C., Grignani, F. andRiccardi, C. (1991) A rapid and simple method for measuringthymocyte apoptosis by propidium iodide staining and flow cytometry. J. Immunol. Methods 139, 271-279. https://doi.org/10.1016/0022-1759(91)90198-O
  177. Noh, J. S., Kang, H. J., Kim, E.Y., Sohn, S., Chung, Y. K., Kim,S. U. and Gwag, B. J. (2000) Haloperidol-induced neuronalapoptosis: role of p38 and c-Jun-NH(2)-tenninal protein kinase.J. Neurochem. 75, 2327-2334. https://doi.org/10.1046/j.1471-4159.2000.0752327.x
  178. Noh, K. M. and Koh, J. Y. (2000) Induction and activation by zincof NADPH oxidase in cultured cortical neurons and astrocytes.J. Neurosci. 20, RC111. https://doi.org/10.1523/JNEUROSCI.20-23-j0001.2000
  179. O'Neill, M. J., Hicks, C. and Ward, M. (1996) Neuroprotectiveeffects of 7-nitroindazole in the gerbil model of global cerebralischemia. Eur. J. Pharmacol. 310, 115-122. https://doi.org/10.1016/0014-2999(96)00387-1
  180. Olney, J. W., Labruyere, J., Wang, G., Wozniak, D. F., Price, M.T. and Sesma, M. A (1991) NMDA antagonist neurotoxicity:mechanism and prevention. Science 254, 1515-1518. https://doi.org/10.1126/science.1835799
  181. Ostwald, K., Hagberg, H., Andine, P. and Karlsson, J. O. (1993)Upregulation of calpain activity in neonatal rat brain afterhypoxic-ischemia. Brain Res. 630, 289-294. https://doi.org/10.1016/0006-8993(93)90668-D
  182. Ouagazzal, A., Nieoullon, A. and Amalric, M. (1993) Effects ofdopamine D1 and D2 receptor blockade on MK-801-inducedhyperlocomotion in rats. Psychopharmacology (Berl.) 111, 427-434. https://doi.org/10.1007/BF02253532
  183. Ozawa, H., Shioda, S., Dohi, K., Matsumoto, H., Mizushima, H.,Zhou, C. J., Funahashi, H., Nakai, Y., Nakajo, S. andMatsumoto, K. (1999) Delayed neuronal cell death in the rathippocampus is mediated by the mitogen-activated proteinkinase signal transduction pathway. Neurosci. Lett. 262, 57-60. https://doi.org/10.1016/S0304-3940(99)00034-8
  184. Park, E. C., Jou, I. and Gwag, B. J. (1998) Nerve growth factor potentiates the oxidative necrosis of striatal cholinergic neurons. NeuroReport 9, 687-690. https://doi.org/10.1097/00001756-199803090-00023
  185. Pellegrini-Giampietro, D. E., Gorter, J. A., Bennett, M. V. andZukin, R. S. (1997) The GluR2 (GluR-B) hypothesis: $Ca(^{2+})$-permeable AMPA receptors in neurological disorders. Trends. Neurosci. 20, 464-470. https://doi.org/10.1016/S0166-2236(97)01100-4
  186. Pellegrini-Giampietro, D. E., Zukin, R. S., Bennett, M. V., Cho, S.and Pulsinelli, W. A. (1992) Switch in glutamate receptorsubunit gene expression in CA1 subfield of hippocampusfollowing global ischemia in rats. Proc. Natl. Acad. Sci. USA89, 10499-10503. https://doi.org/10.1073/pnas.89.21.10499
  187. Peng, T. I., Jou, M. J., Sheu, S. S. and Greenamyre, J. T. (1998)Visualization of NMDA receptor-induced mitochondrialcalcium accumulation in striatal neurons. Exp. Neurol. 149, 1-12. https://doi.org/10.1006/exnr.1997.6599
  188. Piantadosi, C. A. and Zhang, J. (1996) Mitochondrial generationof reactive oxygen species after brain ischemia in the rat.Stroke 27, 327-332. https://doi.org/10.1161/01.STR.27.2.327
  189. Planas, A. M., Soriano, M. A., Rodriguez-Farre, E. and Ferrer, I.(1995) Induction of cyclooxygenase-2 mRNA and proteinfollowing transient focal ischemia in the rat brain. Neurosci.Lett. 200, 187-190. https://doi.org/10.1016/0304-3940(95)12108-G
  190. Plesnila, N., Zinkel, S., Le, D. A., Arnin-Hanjani, S., Wu, Y., Qiu,J., Chiarugi, A., Thomas, S. S., Kohane, D. S., Korsmeyer, S.J. and Moskowitz, M. A. (2001) BID mediates neuronal celldeath after oxygen/ glucose deprivation and focal cerebralischemia. Proc. Natl. Acad. Sci. USA (in press).
  191. Portera-Cailliau, C., Hedreen, J. C., Price, D. L., and Koliatsos, V. E. (1995) Evidence for apoptotic cell death in Huntington disease and excitotoxic animal models. J. Neurosci. 15, 3775- 3787. https://doi.org/10.1523/JNEUROSCI.15-05-03775.1995
  192. Prehn, J. H., Jordan, J., Ghadge, G. D., Preis, E., Galindo, M. F.,Roos, R. P., Krieglstein, J. and Miller, R. J. (1997) $Ca^{2+}$ and reactive oxygen species in staurosporine-induced neuronal apoptosis. J. Neurochem. 68, 1679-1685. https://doi.org/10.1046/j.1471-4159.1997.68041679.x
  193. Radi, R., Beckman, J. S., Bush, K. M. and Freeman, B. A. (1991)Peroxynitrite oxidation of sulthydryls. The cytotoxic potentialof superoxide and nitric oxide. J. BioI. Chem. 266, 4244-4250.
  194. Radi, R., Beckman, J. S., Bush, K. M. and Freeman, B. A. (1991)Peroxynitrite-induced membrane lipid peroxidation: thecytotoxic potential of superoxide and nitric oxide. Arch.Biochem. Biophys. 288,481-487. https://doi.org/10.1016/0003-9861(91)90224-7
  195. Radi, R., Rodriguez, M., Castro, L. and Telleri, R. (1994)Inhibition of mitochondrial electron transport by peroxynitrite.Arch. Biochem. Biophys. 308, 89-95. https://doi.org/10.1006/abbi.1994.1013
  196. Radi, R., Sims, S., Cassina, A. and Turrens, J. F. (1993) Roles ofcatalase and cytochrome c in hydroperoxide-dependent lipidperoxidation and chemiluminescence in rat heart and kidneymitochondria. Free. Radic. Biol. Med. 15, 653-9. https://doi.org/10.1016/0891-5849(93)90169-U
  197. Rami, A. and Krieglstein, J. (1993) Protective effects of calpaininhibitors against neuronal damage caused by cytotoxic hypoxiain vitro and ischemia in vivo. Brain Res. 609, 67-70. https://doi.org/10.1016/0006-8993(93)90856-I
  198. Raoul, C., Henderson, C. E. and Pettmann, B. (1999) Programmedcell death of embryonic motoneurons triggered through the Fasdeath receptor. J. Cell BioI. 147, 1049-1062. https://doi.org/10.1083/jcb.147.5.1049
  199. Ratan, R. R., Murphy, T. H. and Baraban, J. M. (1994) Oxidativestress induces apoptosis in embryonic cortical neurons. J.Neurochem. 62, 376-379. https://doi.org/10.1046/j.1471-4159.1994.62010376.x
  200. Rego, A. C., Santos, M. S. and Oliveira, C. R. (2000) Glutamate-ediatedinhibition of oxidative phosphorylation in culturedretinal cells. Neurochem Int. 36, 159-166. https://doi.org/10.1016/S0197-0186(99)00107-2
  201. Reynolds, J. E., Li, J., Craig, R. W. and Eastman, A. (1996) BCL-2 and MCL-1 expression in Chinese hamster ovary cellsinhibits intracellular acidification and apoptosis induced bystaurosporine. Exp. Cell Res. 225, 430-436. https://doi.org/10.1006/excr.1996.0194
  202. Roberts-Lewis, J. M., Savage, M. J., Marcy, V. R., Pinsker, L. R.and Siman, R. (1994) Immunolocalization of calpain I-mediated spectrin degradation to vulnerable neurons in theischemic gerbil brain. J. Neurosci. 14, 3934-3944. https://doi.org/10.1523/JNEUROSCI.14-06-03934.1994
  203. Robertson, J. D., Orrenius, S. and Zhivotovsky, B. (2000) Review:nuclear events in apoptosis. J. Struct. Biol. 129, 346-358. https://doi.org/10.1006/jsbi.2000.4254
  204. Rogawski, M. A. (2000) Low affinity channel blocking(uncompetitive) NMDA receptor antagonists as therapeuticagents--toward an understanding of their favorable tolerability.Amino. Acids 19, 133-149. https://doi.org/10.1007/s007260070042
  205. Rordorf, G., Uemura, Y. and Bonventre, J. V. (1991)Characterization of phospholipase A2 (PLA2) activity in gerbilbrain: enhanced activities of cytosolic, mitochondrial, andmicrosomal forms after ischemia and reperfusion. J. Neurosci.11, 1829-1836. https://doi.org/10.1523/JNEUROSCI.11-06-01829.1991
  206. Rosenbaum, D. M., D'Amore, J., Llena, J., Rybak, S., Balkany, A. and Kessler, J. A. (1998) Pretreatment with intraventricular aurintricarboxylic acid decreases infarct size by inhibiting apoptosis following transient global ischemia in gerbils. Ann. Neurol. 43, 654-660. https://doi.org/10.1002/ana.410430515
  207. Ross, D. T. and Duhaime, A. C. (1989) Degeneration of neuronsin the thalamic reticular nucleus following transient ischemiadue to raised intracranial pressure: excitotoxic degenerationmediated via non-NMDA receptors. Brain Res. 501, 129-143. https://doi.org/10.1016/0006-8993(89)91034-2
  208. Rothman, S. M., Yamada, K. A. and Lancaster, N. (1993)Nordihydroguaiaretic acid attenuates NMDA neurotoxicity--actionbeyond the receptor. Neuropharmacology 32, 1279-1288. https://doi.org/10.1016/0028-3908(93)90022-U
  209. Ryu, B., Kim, E. Y. and Gwag B. J. (1998) Oxidative stress is not required for neuronal apoptosis in cortical cell cultures,presented at 28th Annual Meeting of Society for Neuroscience,LA.
  210. Sairanen, T., Ristimaki, A., Karjalainen-Lindsberg, M. L., Paetau,A., Kaste, M. and Lindsberg, P. J. (1998) Cyclooxygenase-2 isinduced globally in infracted human brain. Ann. Neurol. 43,738-747. https://doi.org/10.1002/ana.410430608
  211. Saluja, I., Song, D., O'Regan, M. H. and Phillis, J. W. (1997) Roleof phospholipase A2 in the release of free fatty acids duringischemia-reperfusion in the rat cerebral cortex. Neurosci. Lett.233,97-100. https://doi.org/10.1016/S0304-3940(97)00646-0
  212. Samdani, A. F., Dawson, T. M. and Dawson, V. L. (1997) Nitricoxide synthase in models of focal ischemia. Stroke 28, 1283-1288. https://doi.org/10.1161/01.STR.28.6.1283
  213. Sanfeliu, C., Hunt, A. and Patel, A. J. (1990) Exposure to N-methyl-D-aspartate increases release of arachidonic acid inprimary cultures of rat hippocampal neurons and not inastrocytes. Brain Res. 526, 241-248. https://doi.org/10.1016/0006-8993(90)91228-9
  214. Sapirstein, A. and Bonventre, J. V. (2000) Phospholipases A2 inischemic and toxic brain injury. Neurochem. Res. 25, 745-753. https://doi.org/10.1023/A:1007583708713
  215. Schulz, J. B., WelIer, M., Matthews, R. T., Heneka, M. T.,Groscurth, P., Martinou, J. C., Lommatzsch, J., von Coelln, R.,Wullner, U., Loschmann, P. A., Beal, M. F., Dichgans, J. andKlockgether, T. (1998) Extended therapeutic window forcaspase inhibition and synergy with MK-801 in the treatmentof cerebral histotoxic hypoxia. Cell Death. Differ. 5, 847-857. https://doi.org/10.1038/sj.cdd.4400420
  216. Schwarzschild, M. A., Cole, R. L., Meyers, M. A. and Hyman, S.E. (1999) Contrasting calcium dependencies of SAPK andERK activations by glutamate in cultured striatal neurons. J.Neurochem 72, 2248-2255. https://doi.org/10.1046/j.1471-4159.1999.0722248.x
  217. Schweizer, M. and Richter, C. (1994) Gliotoxin stimulates $Ca^{2+}$release from intact rat liver mitochondria. Biochemistry 33,13401-13405. https://doi.org/10.1021/bi00249a028
  218. Sensi, S. L., Canzoniero, L. M., Yu, S. P., Ying, H. S., Koh, J. Y.,Kerchner, G. A. and Choi, D. W. (1997) Measurement ofintracellular free zinc in living cortical neurons: routes of entry.J. Neurosci. 17, 9554-9564. https://doi.org/10.1523/JNEUROSCI.17-24-09554.1997
  219. Sensi, S. L., Ym, H. Z., Carriedo, S. G., Rao, S. S. and Weiss, J.H. (1999) Preferential $Zn^{2+}$ influx through $Ca^{2+}$-permeable AMPA/kainate channels triggers prolonged mitochondrialsuperoxide production. Proc. Natl. Acad. Sci. USA 96, 2414-2419. https://doi.org/10.1073/pnas.96.5.2414
  220. Seo, S. Y., Kim, E. Y., Kim, H. and Gwag, B. J. (1999)Neuroprotective effect of high glucose against NMDA, freeradical, and oxygen-glucose deprivation through enhancedmitochondrial potentials. J. Neurosci. 19, 8849-8855.
  221. Seubert, P., Larson, J., Oliver, M., Jung, M. W., Baudry, M. andLynch, G. (1988) Stimulation of NMDA receptors inducesproteolysis of spectrin in hippocampus. Brain Res. 460, 189-194. https://doi.org/10.1016/0006-8993(88)91222-X
  222. Sevanian, A., Muakkassah-Kelly, S. F. and Montestruque, S.(1983) The influence of phospholipase A2 and glutathioneperoxidase on the elimination of membrane lipid peroxides.Arch. Biochem Biophys. 223, 441-52. https://doi.org/10.1016/0003-9861(83)90608-2
  223. Shackelford, D. A., Yeh, R. Y., Hsu, M., Buzsaki, G. and Zivin, J.A. (1995) Effect of cerebral ischemia on calcium/calmodulin-dependentprotein kinase II activity and phosphorylation. J.Cereb. Blood Flow Metab. 15, 450-461. https://doi.org/10.1038/jcbfm.1995.56
  224. Shapira, S., Kadar, T. and Weissman, B. A. (1994) Dose-dependenteffect of nitric oxide synthase inhibition following transient forebrain ischemia in gerbils. Brain Res. 668, 80-84. https://doi.org/10.1016/0006-8993(94)90513-4
  225. Sheardown, M. J., Nielsen, E. O., Hansen, A. J., Jacobsen, P. andHonore, T. (1990) 2,3-Dihydroxy-6-nitro-7-sulfamoyl-benzo(f)quinozaline: A neuroprotectant for cerebral ischemia.Science 247, 571-574. https://doi.org/10.1126/science.2154034
  226. Sheline, C. T., Behrens, M. M. and Choi, D. W. (2000) Zinc-inducedcortical neuronal death: contribution of energy failureattributable to loss of NAD(+) and inhibition of glycolysis. J.Neurosci. 20, 3139-3146. https://doi.org/10.1523/JNEUROSCI.20-09-03139.2000
  227. Shigeno, T., Mirna, T., Takakura, K., Graham, D. I., Kato, G.,Hashimoto, Y. and Furukawa S. (1991) Amelioration ofdelayed neuronal death in hippocampus by nerve growth factor.J. Neurosci. 11, 2914-2919. https://doi.org/10.1523/JNEUROSCI.11-09-02914.1991
  228. Shim, J. S., Lee, H. J., Park, S. S., Cha, B. G. and Chang, H. R.(2001) Curcumin-induced apoptosis of A-431 cells involvescaspase-3 activation. J. Biochem. Mol. Biol. 34, 189-193.
  229. Siesjo, B. K., Katsura, K. I., Kristian, T., Li, P. A. and Siesjo, P. (1996) Molecular mechanisms of acidosis-mediated damage. Acta Neurochir. Suppl. (Wien.) 66, 8-14.
  230. Simon, R. P., Swan, J. H., Griffiths, T. and Meldrum, B. S. (1984) Blockade of N-methyl-D-aspartate receptors may protect against ischemic damage in the brain. Science 226, 850-852. https://doi.org/10.1126/science.6093256
  231. Snider, B. J., Gottron, F. J. and Choi, D. W. (1999) Apoptosis and necrosis in cerebrovascular disease. Ann. N.Y. Acad. Sci. 893, 243-253. https://doi.org/10.1111/j.1749-6632.1999.tb07829.x
  232. Snider, W. D. (1994) Functions of the neurotrophins duringnervous system development: What the knockouts are teachingus. Cell 77, 627-638. https://doi.org/10.1016/0092-8674(94)90048-5
  233. Sohn, S., Kim, E. Y. and Gwag, B. J. (1998) Glutamateneurotoxicity in mouse cortical neurons: a typical necrosis withDNA ladders and chromatin condensation. Neurosci. Lett. 240,1-4. https://doi.org/10.1016/S0304-3940(97)00887-2
  234. Sorimachi, H., Ishiura, S. and Suzuki, K. (1997) Structure andphysiological function of calpains. Biochem. J. 328, 721-732. https://doi.org/10.1042/bj3280721
  235. Srivastava, R. K., Sollott, S. J., Khan, L., Hansford, R., Lakatta, E.G. and Longo, D. L. (1999) Bcl-2 and Bcl-X(L) blockthapsigargin-induced nitric oxide generation, c-Jun NH(2)-terminalkinase activity, and apoptosis. Mol. Cell BioI. 19,5659-5674. https://doi.org/10.1128/MCB.19.8.5659
  236. Stagliano, N. E., Dietrich, W. D., Prado, R., Green, E. J. andBusto, R. (1997) The role of nitric oxide in thepathophysiology of thromboembolic stroke in the rat. BrainRes. 759, 32-40. https://doi.org/10.1016/S0006-8993(97)00200-X
  237. Stout, A. K., Raphael, H. M., Kanterewicz, B. I., Klann, E. andReynolds, I. J. (1998) Glutamate-induced neuron death requiresmitochondrial calcium uptake. Nat. Neurosci. 1, 366-373. https://doi.org/10.1038/1577
  238. Strasser, A., O'Connor, L. and Dixit, V. M. (2000) Apoptosissignaling. Annu. Rev. Biochem. 69,217-245. https://doi.org/10.1146/annurev.biochem.69.1.217
  239. Sucher, N. J., Awobuluyi, M., Choi, Y. B. and Lipton, S. A.(1996) NMDA receptors: from genes to channels. Trends.Phannacol. Sci. 17, 348-355. https://doi.org/10.1016/S0165-6147(96)10046-8
  240. Sugawara, T., Fujirnura, M., Morita-Fujirnura, Y., Kawase, M. andChan, P. H. (1999) Mitochondrial release of cytochrome ccorresponds to the selective vulnerability of hippocampal CAlneurons in rats after transient global cerebral ischemia. J.Neurosci. 19, RC39. https://doi.org/10.1523/JNEUROSCI.19-22-j0002.1999
  241. Sugino, T., Nozaki, K., Takagi, Y., Hattori, I., Hashimoto, N., Moriguchi, T. and Nishida, E. (2000) Activation of mitogenactivated protein kinases after transient forebrain ischemia in gerbil hippocampus. J. Neurosci. 20,4506-4514. https://doi.org/10.1523/JNEUROSCI.20-12-04506.2000
  242. Suh, S. W., Chen, J. W., Motamedi, M., Bell, B., Listiak, K.,Pons, N. F., Danscher, G. and Frederickson, C. J. (2000)Evidence that synoptically-released zinc contributes to neuronalinjury after traumatic brain injury. Brain Res. 852, 268-273. https://doi.org/10.1016/S0006-8993(99)02095-8
  243. Taglialatela, G., Robinson, R. and Perez-Polo, J. R. (1997)Inhibition of nuclear factor kappa B (NFkappaB) activityinduces nerve growth factor-resistant apoptosis in PCl2 cells. J.Neurosci. Res. 47, 155-162. https://doi.org/10.1002/(SICI)1097-4547(19970115)47:2<155::AID-JNR4>3.0.CO;2-E
  244. Takadera, T., Matsuda, I. and Ohyashiki, T. (1999) Apoptotic celldeath and caspase-3 activation induced by N-methyl-Daspartatereceptor antagonists and their prevention by insul-inlikegrowth factor I. J. Neurochem. 73, 548-556. https://doi.org/10.1046/j.1471-4159.1999.0730548.x
  245. Takagi, K., Ginsberg, M. D., Globus, M. Y., Dietrich, W. D.,Martinez, E., Kraydieh, S. and Busto, R. (1993) Changes inamino acid neurotransmitters and cerebral blood flow in theischemic penumbral region following middle cerebral arteryocclusion in the rat: correlation with histopathology. J. Cereb.Blood Flow Metab. 13, 575-585. https://doi.org/10.1038/jcbfm.1993.75
  246. Takehara, Y., Kanno, T., Yoshioka, T., Inoue, M. and Utsumi, K.(1995) Oxygen-dependent regulation of mitochondrial energymetabolism by nitric oxide. Arch. Biochem. Biophys. 323, 27-32. https://doi.org/10.1006/abbi.1995.0005
  247. Tournier, C., Hess, P., Yang, D. D., Xu, J., Turner, T. K., Nirnnual,A., Bar-Sagi, D., Jones, S. N., Flavell, R. A. and Davis, R. J.(2000) Requirement of JNK for stress-induced activation of thecytochrome c-mediated death pathway. Science 288, 870-874. https://doi.org/10.1126/science.288.5467.870
  248. Troy, C. M. and Shelanski, M. L. (1994) Down-regulation ofcopper/zinc superoxide dismutase causes apoptotic death inPC12 neuronal cells. Proc. Natl. Acad. Sci. USA 91, 6384-6387. https://doi.org/10.1073/pnas.91.14.6384
  249. van Lookeren, C., Thibodeaux, H., van Bruggen, N., Cairns, B.,Gerlai, R., Palmer, J. T., Williams, S. P and Lowe, D. G.(1999) Evidence for a protective role of metallothionein-1 infocal cerebral ischemia. Proc. Natl. Acad. Sci. USA 96, 12870-12875. https://doi.org/10.1073/pnas.96.22.12870
  250. Vanhoutte, P., Bamier, J. V., Guibert, B., Pages, C., Besson, M. J.,Hipskind, R. A. and Caboche, J. (1999) Glutamate inducesphosphorylation of Elk-1 and CREB, along with c-fosactivation, via an extracellular signal-regulated kinase-dependentpathway in brain slices. Mol. Cell BioI. 19, 136-146 https://doi.org/10.1128/MCB.19.1.136
  251. Velier, J. J., Ellison, J. A., KikIy, K. K., Spera, P. A., Barone, F. C. and Feuerstein, G. Z. (1999) Caspase-8 and caspase-3 are expressed by different populations of cortical neurons undergoing delayed cell death after focal stroke in the rat. J. Neurosci. 19, 5932-5941.
  252. Wang, G. J., Randall, R. D. and Thayer, S. A. (1994) Glutamate-inducedintracellular acidification of cultured hippocampalneurons demonstrates altered energy metabolism resulting from$Ca^{2+}$ loads. J. Neurophysiol. 72, 2563-2569. https://doi.org/10.1152/jn.1994.72.6.2563
  253. Wang, H. G., Pathan, N., Ethell, I. M., Krajewski, S., Yamaguchi,Y., Shibasaki, F., McKeon, F., Bobo, T., Franke, T. F. andReed, J. C. (1999) $Ca^{2+}$-induced apoptosis through calcineurin dephosphorylation of BAD. Science 284, 339-343. https://doi.org/10.1126/science.284.5412.339
  254. Wang, K. K. (2000) Calpain and caspase: can you tell thedifference? Trends. Neurosci. 23, 20-26. https://doi.org/10.1016/S0166-2236(99)01479-4
  255. Wang, K. K, Roufogalis, B. D. and Villalobo, A. (1990) Calpain Iactivates $Ca^{2+}$ transport by the human erythrocyte plasmamembrane calcium pump. Adv. Exp. Med. Biol. 269, 175-180. https://doi.org/10.1007/978-1-4684-5754-4_29
  256. Ward, M. W., Rego, A. C., Frenguelli, B. G. and Nicholls, D. G.(2000) Mitochondrial membrane potential and glutamate excitotoxicity in cultured cerebellar granule cells. J. Neurosci.20,7208-7219. https://doi.org/10.1523/JNEUROSCI.20-19-07208.2000
  257. Waxham, M. N., Grotta, J. C., Silva, A. J., Strong, R. andAronowski, J. (1996) Ischemia-induced neuronal damage: arole for calcium/calmodulin-dependent protein kinase II. J.Cereb. Blood Flow Metab. 16, 1-6. https://doi.org/10.1097/00004647-199601000-00001
  258. Weiss, J. H., Turetsky, D., Wilke, G. and Choi, D. W. (1994)AMPA/kainate receptor-mediated damage to NADPH-diaphorase-containing neurons is $Ca^{2+}$ dependent. Neurosci.Lett. 167, 93-96. https://doi.org/10.1016/0304-3940(94)91035-9
  259. Welch, K. M. A., Caplan, L. R., Reis, D. J., Siesjo, S. K. andWeir, B. (1997) Primer on cerebrovascular diseases. San Diego,Academic Press.
  260. White, B. C., Krause, G. S., Aust, S. D. and Eyster, G. E. (1985)Postischemic tissue injury by iron-mediated free radical lipidperoxidation. Ann. Emerg. Med. 14,804-809. https://doi.org/10.1016/S0196-0644(85)80062-7
  261. White, R. J. and Reynolds, I. J. (1996) Mitochondrialdepolarization in glutamate-stimulated neurons: an early signalspecific to excitotoxin exposure. J. Neurosci. 16, 5688-5697. https://doi.org/10.1523/JNEUROSCI.16-18-05688.1996
  262. White, R. J. and Reynolds, I. J. (1997) Mitochondria accumulate$Ca^{2+}$ following intense glutamate stimulation of cultured rat forebrain neurons. J. Physiol. 498,31-47. https://doi.org/10.1113/jphysiol.1997.sp021839
  263. Whittemore, E. R., Loo, D. T., Watt, J. A. and Cotman, C. W.(1995) A detailed analysis of hydrogen peroxide-induced celldeath in primary neuronal culture. Neuroscience 67, 921-932. https://doi.org/10.1016/0306-4522(95)00108-U
  264. Won, S. J., Ahn, Y. M. and Gwag, B. J. (2000) Activation ofFADD and caspase-8 in ischemic cortical neurons followingfocal cerebral ischemia in rats, presented at 30th AnnualMeeting of the Society for Neuroscience, New Orleans.
  265. Won, S. J., Ko, H. W., Kim, E. Y., Park, E. C., Huh, K., Jung, N.P., Choi, I., Oh, Y. K., Shin, H. C. and Gwag, B. J. (1999)Nuclear factor kappa B-mediated kainate neurotoxicity in therat and hamster hippocampus. Neuroscience 94, 83-91. https://doi.org/10.1016/S0306-4522(99)00196-7
  266. Woo, M., Hakem, R., Soengas, M. S., Duncan, G. S., Shahinian,A., Kagi, D., Hakem, A., McCurrach, M., Khoo, W., Kaufman,S. A., Senaldi, G., Howard, T., Lowe, S. W. and Mak, T. W.(1998) Essential contribution of caspase 3/CPP32 to apoptosisand its associated nuclear changes. Genes Dev. 12, 806-819. https://doi.org/10.1101/gad.12.6.806
  267. Wyllie, A. H. (1980) Glucocorticoid-induced thymocyte apoptosisis associated with endogenous endonuclease activation. Nature284, 555-556. https://doi.org/10.1038/284555a0
  268. Wyllie, A. H., Morris, R. G., Smith, A. L. and Dunlop, D. (1984)Chromatin cleavage in apoptosis: association with condensedchromatin morphology and dependence on macromolecularsynthesis. J. Pathol. 142, 67-77. https://doi.org/10.1002/path.1711420112
  269. Xia, Z., Dickens, M., Raingeaud, J., Davis, R. J. and Greenberg,M. E. (1995) Opposing effects of ERK and JNK-p38 MAPkinases on apoptosis. Science 270, 1326-1331. https://doi.org/10.1126/science.270.5240.1326
  270. Xia, Z., Dudek, H., Miranti, C. K. and Greenberg, M. E. (1996)Calcium influx via the NMDA receptor induces immediateearly gene transcription by a MAP kinase/ERK-dependentmechanism. J. Neurosci. 16, 5425-5436. https://doi.org/10.1523/JNEUROSCI.16-17-05425.1996
  271. Yan, Q., Elliott, J. and Snider, W. D. (1992) Brain-derivedneurotrophic factor rescues spinal motor neurons fromaxotomy-induced cell death. Nature 360, 753-755. https://doi.org/10.1038/360753a0
  272. Yerrnilov, V., Yoshie, Y., Rubio, J. and Ohshima, H. (1996) Effectsof carbon dioxide/bicarbonate on induction of DNA single-strandbreaks and formation of 8-nitroguanine, 8-oxoguanineand base-propenal mediated by peroxynitrite. FEBS Lett. 399,67-70. https://doi.org/10.1016/S0014-5793(96)01288-4
  273. Yoshida, T., Limrnroth, V., Irikura, K. and Moskowitz, M. A.(1994) The NOS inhibitor, 7-nitroindazole, decreases focalinfarct volume but not the response to topical acetylcholine inpial vessels. J Cereb. Blood Flow Metab. 14, 924-929. https://doi.org/10.1038/jcbfm.1994.123
  274. Youdim, M. B., Ben-Shachar, D. and Riederer, P. (1993) Thepossible role of iron in the etiopathology of Parkinson'sDisease. Mov. Disord. 8, 1-12. https://doi.org/10.1002/mds.870080102
  275. Yu, S. P, Yeh, C., Strasser, U., Tian, M. and Choi, D. W. (1999) NMDA receptor-mediated $K^+$ efflux and neuronal apoptosis. Science 284, 336-339. https://doi.org/10.1126/science.284.5412.336
  276. Zaleska, M. M. and Floyd, R. A. (1985) Regional lipidperoxidation in rat brain in vitro: possible role of endogenousiron. Neurochem. Res. 10,397-410. https://doi.org/10.1007/BF00964608
  277. Zhang, J., Dawson, V. L., Dawson, T. M. and Snyder, S. H.(1994) Nitric oxide activation of poly(ADP-ribose) synthetasein neurotoxicity. Science 263, 687-689. https://doi.org/10.1126/science.8080500
  278. Zhang, Y., Marcillat, O., Giulivi, C., Ernster, L. and Davies, K. J.(1990) The oxidative inactivation of mitochondrial electrontransport chain components and ATPase. J. BioI. Chem. 265,16330-16336.

Cited by

  1. Protective effect of treatment with low-dose gliclazide in a model of middle cerebral artery occlusion and reperfusion in rats vol.1560, 2014, https://doi.org/10.1016/j.brainres.2014.02.044
  2. Capillary cerebral amyloid angiopathy is associated with vessel occlusion and cerebral blood flow disturbances vol.30, pp.12, 2009, https://doi.org/10.1016/j.neurobiolaging.2008.01.017
  3. EUK-207, a superoxide dismutase/catalase mimetic, is neuroprotective against oxygen/glucose deprivation-induced neuronal death in cultured hippocampal slices vol.1247, 2009, https://doi.org/10.1016/j.brainres.2008.10.016
  4. Role of the NMDA receptor and iron on free radical production and brain damage following transient middle cerebral artery occlusion vol.1455, 2012, https://doi.org/10.1016/j.brainres.2012.03.025
  5. Platinum-Doped Ceria Based Biosensor forin Vitroandin VivoMonitoring of Lactate during Hypoxia vol.87, pp.5, 2015, https://doi.org/10.1021/ac5047455
  6. Thrombin potently enhances swelling-sensitive glutamate efflux from cultured astrocytes vol.55, pp.9, 2007, https://doi.org/10.1002/glia.20513
  7. Some new prospects in the understanding of the molecular basis of the pathogenesis of stroke vol.182, pp.1, 2007, https://doi.org/10.1007/s00221-007-1050-9
  8. Changes in neuronal response to ischemia in retinas with genetic alterations of somatostatin receptor expression vol.25, pp.5, 2007, https://doi.org/10.1111/j.1460-9568.2007.05419.x
  9. Involvement of nitric oxide synthase and ROS-mediated activation of L-type voltage-gated Ca2+ channels in NMDA-induced DPYSL3 degradation vol.1119, pp.1, 2006, https://doi.org/10.1016/j.brainres.2006.08.047
  10. Effects of scutellarin on PKC? in PC12 cell injury induced by oxygen and glucose deprivation vol.28, pp.10, 2007, https://doi.org/10.1111/j.1745-7254.2007.00502.x
  11. Gypenoside Protects Cardiomyocytes against Ischemia-Reperfusion Injury via the Inhibition of Mitogen-Activated Protein Kinase Mediated Nuclear Factor Kappa B Pathway In Vitro and In Vivo vol.7, 2016, https://doi.org/10.3389/fphar.2016.00148
  12. Roles of individual prolyl-4-hydroxylase isoforms in the first 24 hours following transient focal cerebral ischaemia: insights from genetically modified mice vol.590, pp.16, 2012, https://doi.org/10.1113/jphysiol.2012.232884
  13. Oxidative-stress-induced alterations in Sp factors mediate transcriptional regulation of the NR1 subunit in hippocampus during hypoxia vol.49, pp.2, 2010, https://doi.org/10.1016/j.freeradbiomed.2010.03.027
  14. Effects of desferoxamine-induced hypoxia on neuronal human mu-opioid receptor gene expression vol.398, pp.1, 2010, https://doi.org/10.1016/j.bbrc.2010.06.032
  15. Stressor-induced NMDAR dysfunction as a unifying hypothesis for the aetiology, pathogenesis and comorbidity of clinical depression vol.77, pp.4, 2011, https://doi.org/10.1016/j.mehy.2011.06.021
  16. Detection of protein biomarkers using high-throughput immunoblotting following focal ischemic or penetrating ballistic-like brain injuries in rats vol.22, pp.10, 2008, https://doi.org/10.1080/02699050802304706
  17. Neuroprotective effect of adenoviral catalase gene transfer in cortical neuronal cultures vol.1270, 2009, https://doi.org/10.1016/j.brainres.2009.03.006
  18. Manganese-enhanced magnetic resonance imaging of hypoxic–ischemic brain injury in the neonatal rat vol.45, pp.3, 2009, https://doi.org/10.1016/j.neuroimage.2008.12.007
  19. Role of iron in ischemia-induced neurodegeneration: mechanisms and insights vol.29, pp.3, 2014, https://doi.org/10.1007/s11011-014-9522-7
  20. Effect of tramadol on behavioral alterations and lipid peroxidation after transient forebrain ischemia in rats vol.22, pp.9, 2012, https://doi.org/10.3109/15376516.2012.716092
  21. Protein arginine methylation facilitates KCNQ channel-PIP2interaction leading to seizure suppression vol.5, 2016, https://doi.org/10.7554/eLife.17159
  22. mGluR1,5 activation protects cortical astrocytes and GABAergic neurons from ischemia-induced impairment vol.75, pp.2, 2013, https://doi.org/10.1016/j.neures.2012.12.002
  23. Generation of hydrogen peroxide mediates hanging death-induced neuronal cell apoptosis in the dentate gyrus of the rat brain vol.95, 2013, https://doi.org/10.1016/j.brainresbull.2013.03.002
  24. Polysaccharides from Wolfberry Antagonizes Glutamate Excitotoxicity in Rat Cortical Neurons vol.29, pp.8, 2009, https://doi.org/10.1007/s10571-009-9419-x
  25. 1,8-Cineole ameliorates oxygen-glucose deprivation/reoxygenation-induced ischaemic injury by reducing oxidative stress in rat cortical neuron/glia vol.66, pp.12, 2014, https://doi.org/10.1111/jphp.12295
  26. Chronic hypobaric hypoxia induced apoptosis in CA1 region of hippocampus: A possible role of NMDAR mediated p75NTR upregulation vol.212, pp.1, 2008, https://doi.org/10.1016/j.expneurol.2008.01.030
  27. Kainate-Mediated Excitotoxicity Induces Neuronal Death in the Rat Spinal Cord In Vitro via a PARP-1 Dependent Cell Death Pathway (Parthanatos) vol.30, pp.7, 2010, https://doi.org/10.1007/s10571-010-9531-y
  28. Perspective of synaptic protection after post-infarction treatment with statins vol.13, pp.1, 2015, https://doi.org/10.1186/s12967-015-0472-6
  29. Effect of the inhibitory neurotransmitter glycine on slow destructive processes in brain cortex slices under anoxic conditions vol.72, pp.5, 2007, https://doi.org/10.1134/S0006297907050070
  30. Mechanisms of vincristine-induced neurotoxicity: Possible reversal by erythropoietin vol.5, pp.3, 2011, https://doi.org/10.5582/ddt.2011.v5.3.136
  31. Association analysis of chromosome 1 migraine candidate genes vol.8, pp.1, 2007, https://doi.org/10.1186/1471-2350-8-57
  32. Neuroprotection against neonatal hypoxia/ischemia-induced cerebral cell death by prevention of calpain-mediated mGluR1α truncation vol.218, pp.1, 2009, https://doi.org/10.1016/j.expneurol.2009.04.006
  33. Increased expression of the hypoxia-related genes in peripheral blood leukocytes of human subjects with acute ischemic stroke vol.5, pp.2, 2014, https://doi.org/10.1111/cen3.12104
  34. Proteomic Analysis of Mouse Hypothalamus under Simulated Microgravity vol.33, pp.11, 2008, https://doi.org/10.1007/s11064-008-9738-1
  35. Hypoxic ischemia and proteasome dysfunction alter tau isoform ratio by inhibiting exon 10 splicing 2010, https://doi.org/10.1111/j.1471-4159.2010.06732.x
  36. Hypoxia-induced deactivation of NGF-mediated ERK1/2 signaling in hippocampal cells: Neuroprotection by acetyl-L-carnitine vol.86, pp.12, 2008, https://doi.org/10.1002/jnr.21722
  37. Hypoxia induces complex I inhibition and ultrastructural damage by increasing mitochondrial nitric oxide in developing CNS vol.27, pp.1, 2007, https://doi.org/10.1111/j.1460-9568.2007.05995.x
  38. Oxidative modification of M-type K+ channels as a mechanism of cytoprotective neuronal silencing vol.25, pp.20, 2006, https://doi.org/10.1038/sj.emboj.7601374
  39. Amelioration of cerebral infarction and improvement of neurological deficit by a Korean herbal medicine, modified Bo-Yang-Hwan-O-Tang vol.63, pp.5, 2011, https://doi.org/10.1111/j.2042-7158.2011.01254.x
  40. Role of KATPchannels in protection against neuronal excitatory insults vol.103, pp.5, 2007, https://doi.org/10.1111/j.1471-4159.2007.04963.x
  41. Anti-apoptotic Effect of Taxodione on Serum/Glucose Deprivation-Induced PC12 Cells Death vol.34, pp.8, 2014, https://doi.org/10.1007/s10571-014-0085-2
  42. Cortical plasticity is preserved in nondemented older individuals with severe ischemic small vessel disease vol.34, pp.6, 2013, https://doi.org/10.1002/hbm.22003
  43. Oxidative state and oxidative metabolism in the brain of rats with adjuvant-induced arthritis vol.98, pp.3, 2015, https://doi.org/10.1016/j.yexmp.2015.04.002
  44. P43/pro-EMAPII: A Potential Biomarker for Discriminating Traumatic Versus Ischemic Brain Injury vol.26, pp.8, 2009, https://doi.org/10.1089/neu.2008.0811
  45. Ameliorating effects of traditional Chinese medicine preparation, Chinese materia medica and active compounds on ischemia/reperfusion-induced cerebral microcirculatory disturbances and neuron damage vol.5, pp.1, 2015, https://doi.org/10.1016/j.apsb.2014.11.002
  46. PET Imaging of Hypoxia vol.4, pp.1, 2009, https://doi.org/10.1016/j.cpet.2009.05.009
  47. Protective effects of edaravone against cobalt chloride-induced apoptosis in PC12 cells vol.25, pp.2, 2009, https://doi.org/10.1007/s12264-009-1215-6
  48. Guattegaumerine Protects Primary Cultured Cortical Neurons Against Oxidative Stress Injury Induced by Hydrogen Peroxide Concomitant with Serum Deprivation vol.29, pp.3, 2009, https://doi.org/10.1007/s10571-008-9327-5
  49. Edaravone protects PC12 cells from ischemic-like injury via attenuating the damage to mitochondria vol.7, pp.9, 2006, https://doi.org/10.1631/jzus.2006.B0749
  50. Non-selective cation channels, transient receptor potential channels and ischemic stroke vol.1772, pp.8, 2007, https://doi.org/10.1016/j.bbadis.2007.03.004
  51. The central nervous system cytokine response to global ischemia following resuscitation from ventricular fibrillation in a porcine model vol.80, pp.2, 2009, https://doi.org/10.1016/j.resuscitation.2008.08.018
  52. Cerebrospinal Fluid Metabolomics After Natural Product Treatment in an Experimental Model of Cerebral Ischemia vol.20, pp.11, 2016, https://doi.org/10.1089/omi.2016.0112
  53. NR1 and GluR2 expression mediates excitotoxicity in chronic hypobaric hypoxia vol.86, pp.5, 2008, https://doi.org/10.1002/jnr.21554
  54. Effect of astrocyte-targeted production of IL-6 on traumatic brain injury and its impact on the cortical transcriptome vol.68, pp.2, 2008, https://doi.org/10.1002/dneu.20584
  55. Acupuncture to point Baihui prevents ischemia-induced functional impairment of cortical GABAergic neurons vol.307, pp.1-2, 2011, https://doi.org/10.1016/j.jns.2011.04.021
  56. Delayed posthypoxic leukoencephalopathy: a case series and review of the literature vol.5, pp.8, 2015, https://doi.org/10.1002/brb3.364
  57. Pharmacotherapy of neurological complications after cardiac surgery vol.9, pp.1, 2016, https://doi.org/10.17116/kardio20169120-24
  58. The role of glutamate in neuronal ischemic injury: the role of spark in fire vol.33, pp.2, 2012, https://doi.org/10.1007/s10072-011-0828-5
  59. Dexmedetomidine, an α-2a adrenergic agonist, promotes ischemic tolerance in a murine model of spinal cord ischemia-reperfusion vol.147, pp.1, 2014, https://doi.org/10.1016/j.jtcvs.2013.07.043
  60. Ca2+ and acidosis synergistically lead to the dysfunction of cortical GABAergic neurons during ischemia vol.394, pp.3, 2010, https://doi.org/10.1016/j.bbrc.2010.03.056
  61. Calcium ions in neuronal degeneration vol.60, pp.9, 2008, https://doi.org/10.1002/iub.91
  62. Effects of Vinpocetine on mitochondrial function and neuroprotection in primary cortical neurons vol.53, pp.6-8, 2008, https://doi.org/10.1016/j.neuint.2008.08.003
  63. Modulation of the neuronal response to ischaemia by somatostatin analogues in wild-type and knock-out mouse retinas vol.106, pp.5, 2008, https://doi.org/10.1111/j.1471-4159.2008.05556.x
  64. Alcohol-Induced Exacerbation of Ischemic Brain Injury: Role of NAD(P)H Oxidase vol.34, pp.11, 2010, https://doi.org/10.1111/j.1530-0277.2010.01284.x
  65. Protective effects of ginsenoside Rb3 on oxygen and glucose deprivation-induced ischemic injury in PC12 cells vol.31, pp.3, 2010, https://doi.org/10.1038/aps.2010.9
  66. Bakkenolide-IIIa Protects Against Cerebral Damage Via Inhibiting NF-κB Activation vol.21, pp.12, 2015, https://doi.org/10.1111/cns.12470
  67. Differential temporal response of hippocampus, cortex and cerebellum to hypobaric hypoxia: A biochemical approach vol.51, pp.6-7, 2007, https://doi.org/10.1016/j.neuint.2007.04.003
  68. Methylene blue protects the cortical blood–brain barrier against ischemia/reperfusion-induced disruptions* vol.38, pp.11, 2010, https://doi.org/10.1097/CCM.0b013e3181f26b0c
  69. Glutamate Excitotoxicity Mediates Neuronal Apoptosis After Hypothermic Circulatory Arrest vol.89, pp.2, 2010, https://doi.org/10.1016/j.athoracsur.2009.10.059
  70. Ceftriaxone rescues hippocampal neurons from excitotoxicity and enhances memory retrieval in chronic hypobaric hypoxia vol.89, pp.4, 2008, https://doi.org/10.1016/j.nlm.2008.01.003
  71. Proteomic analysis and brain-specific systems biology in a rodent model of penetrating ballistic-like brain injury vol.33, pp.24, 2012, https://doi.org/10.1002/elps.201200196
  72. Superoxide dismutase/catalase mimetics but not MAP kinase inhibitors are neuroprotective against oxygen/glucose deprivation-induced neuronal death in hippocampus vol.103, pp.6, 2007, https://doi.org/10.1111/j.1471-4159.2007.04906.x
  73. Low dose of L-glutamic acid attenuated the neurological dysfunctions and excitotoxicity in bilateral common carotid artery occluded mice vol.27, pp.7, 2016, https://doi.org/10.1097/FBP.0000000000000256
  74. Gastrodia elata Blume and an Active Component, p-Hydroxybenzyl Alcohol Reduce Focal Ischemic Brain Injury through Antioxidant Related Gene Expressions vol.28, pp.6, 2005, https://doi.org/10.1248/bpb.28.1016
  75. Regulation of Toll-like receptor 4 expression and its signaling by hypoxia in cultured microglia vol.85, pp.9, 2007, https://doi.org/10.1002/jnr.21322
  76. Neurometabolic and structural alterations in rat brain due to acute hypobaric hypoxia:in vivo1H MRS at 7 T vol.27, pp.3, 2014, https://doi.org/10.1002/nbm.3068
  77. Neuroprotective effects of ebselen are associated with the regulation of Bcl-2 and Bax proteins in cultured mouse cortical neurons vol.399, pp.3, 2006, https://doi.org/10.1016/j.neulet.2006.02.024
  78. Iron mediates endothelial cell damage and blood-brain barrier opening in the hippocampus after transient forebrain ischemia in rats vol.43, pp.2, 2011, https://doi.org/10.3858/emm.2011.43.2.020
  79. Protective Effects of Total Flavones of Rhododendra against Global Cerebral Ischemia Reperfusion Injury vol.37, pp.05, 2009, https://doi.org/10.1142/S0192415X09007284
  80. Mechanism Governing Human Kappa-Opioid Receptor Expression under Desferrioxamine-Induced Hypoxic Mimic Condition in Neuronal NMB Cells vol.18, pp.1, 2017, https://doi.org/10.3390/ijms18010211
  81. Thrombin potentiates d-aspartate efflux from cultured astrocytes under conditions of K+homeostasis disruption vol.111, pp.6, 2009, https://doi.org/10.1111/j.1471-4159.2009.06418.x
  82. A Role for Excitatory Amino Acids in Diabetic Eye Disease vol.2007, 2007, https://doi.org/10.1155/2007/36150
  83. Does Early Postresuscitation Stress Hyperglycemia Affect 72-Hour Neurologic Outcome? Preliminary Observations in the Swine Model vol.15, pp.3, 2011, https://doi.org/10.3109/10903127.2011.569847
  84. NMDA receptor dysregulation in chronic state: A possible mechanism underlying depression with BDNF downregulation vol.79, 2014, https://doi.org/10.1016/j.neuint.2014.09.007
  85. Hypoxia-specific gene expression for ischemic disease gene therapy vol.61, pp.7-8, 2009, https://doi.org/10.1016/j.addr.2009.04.009
  86. Pro-apoptotic Par-4 and dopamine D2 receptor in temporal cortex in schizophrenia, bipolar disorder and major depression vol.118, pp.1-3, 2010, https://doi.org/10.1016/j.schres.2009.12.027
  87. Cobalt Chloride-induced Hypoxia Ameliorates NLRP3-Mediated Caspase-1 Activation in Mixed Glial Cultures vol.13, pp.4, 2013, https://doi.org/10.4110/in.2013.13.4.141
  88. Neuroprotective mechanisms and translational potential of therapeutic hypothermia in the treatment of ischemic stroke vol.12, pp.3, 2017, https://doi.org/10.4103/1673-5374.202915
  89. Study of rat hypothalamic proteome by HPLC/ESI ion trap and HPLC/ESI-Q-TOF MS vol.13, pp.16, 2013, https://doi.org/10.1002/pmic.201300073
  90. Apoptosis in tissues from fatal dengue shock syndrome vol.40, pp.1, 2007, https://doi.org/10.1016/j.jcv.2007.04.024
  91. Hypoxia-induced retinal ganglion cell death and the neuroprotective effects of beta-adrenergic antagonists vol.1148, 2007, https://doi.org/10.1016/j.brainres.2007.02.027
  92. Hippocalcin protects hippocampal neurons against excitotoxin damage by enhancing calcium extrusion vol.145, pp.2, 2007, https://doi.org/10.1016/j.neuroscience.2006.12.011
  93. The neuroprotective effect of intranasally applied leptin against hypoxic neuronal injury vol.74, pp.6, 2010, https://doi.org/10.1016/j.mehy.2009.12.033
  94. Probing the molecular mechanisms of neuronal degeneration: importance of mitochondrial dysfunction and calcineurin activation vol.22, pp.3, 2008, https://doi.org/10.1007/s00540-008-0617-3
  95. What you eat is what you are – A role for polyunsaturated fatty acids in neuroinflammation induced depression? vol.30, pp.4, 2011, https://doi.org/10.1016/j.clnu.2011.03.013
  96. Cell death in the injured brain: Roles of metallothioneins vol.44, pp.1, 2009, https://doi.org/10.1016/j.proghi.2008.10.002
  97. Beneficial Effects of Antecedent Exercise Training on Limb Motor Function and Calpain Expression in a Rat Model of Stroke vol.25, pp.8, 2013, https://doi.org/10.1589/jpts.25.943
  98. The inflammatory footprints of alcohol-induced oxidative damage in neurovascular components vol.25, 2011, https://doi.org/10.1016/j.bbi.2011.01.007
  99. A sequential impairment of cortical astrocytes and GABAergic neurons during ischemia is improved by mGluR1,5 activation vol.34, pp.7, 2013, https://doi.org/10.1007/s10072-012-1220-9
  100. Distortion of homeostatic signaling proteins by simulated microgravity in rat hypothalamus: A16O/18O-labeled comparative integrated proteomic approach vol.14, pp.2-3, 2014, https://doi.org/10.1002/pmic.201300337
  101. Intact glycosaminoglycans from intervertebral disc-derived notochordal cell-conditioned media inhibit neurite growth while maintaining neuronal cell viability vol.15, pp.5, 2015, https://doi.org/10.1016/j.spinee.2015.02.003
  102. L-theanine Administration Results in Neuroprotection and Prevents Glutamate Receptor Agonist-Mediated Injury in the Rat Model of Cerebral Ischemia-Reperfusion vol.27, pp.9, 2013, https://doi.org/10.1002/ptr.4868
  103. Auraptene and Other Prenyloxyphenylpropanoids Suppress Microglial Activation and Dopaminergic Neuronal Cell Death in a Lipopolysaccharide-Induced Model of Parkinson’s Disease vol.17, pp.10, 2016, https://doi.org/10.3390/ijms17101716
  104. GLAST1b, the exon-9 skipping form of the glutamate-aspartate transporter EAAT1 is a sensitive marker of neuronal dysfunction in the hypoxic brain vol.149, pp.2, 2007, https://doi.org/10.1016/j.neuroscience.2007.08.011
  105. Involvement of Ca2+- and cyclic adenosine monophosphate-mediated signaling pathways in photodynamic injury of isolated crayfish neuron and satellite glial cells vol.85, pp.4, 2007, https://doi.org/10.1002/jnr.21190
  106. Quercetin, kaempferol and biapigenin fromhypericum perforatum are neuroprotective against excitotoxic insults vol.13, pp.3-4, 2008, https://doi.org/10.1007/BF03033510
  107. Matrix metalloproteinase-9 in glutamate-dependent adult brain function and dysfunction vol.14, pp.7, 2007, https://doi.org/10.1038/sj.cdd.4402141
  108. Effects of lanthanum chloride on glutamate level, intracellular calcium concentration and caspases expression in the rat hippocampus vol.26, pp.1, 2013, https://doi.org/10.1007/s10534-012-9593-z
  109. Preconditioning with Ginkgo biloba (EGb 761®) provides neuroprotection through HO1 and CRMP2 vol.46, pp.1, 2012, https://doi.org/10.1016/j.nbd.2012.01.006
  110. Melatonin ameliorates oxidative stress, modulates death receptor pathway proteins, and protects the rat cerebrum against bisphenol-A-induced apoptosis vol.347, pp.1-2, 2014, https://doi.org/10.1016/j.jns.2014.10.009
  111. Autocrine signaling involved in cell volume regulation: The role of released transmitters and plasma membrane receptors vol.216, pp.1, 2008, https://doi.org/10.1002/jcp.21406
  112. Increased vulnerability of hippocampal neurons with age in culture: Temporal association with increases in NMDA receptor current, NR2A subunit expression and recruitment of L-type calcium channels vol.1151, 2007, https://doi.org/10.1016/j.brainres.2007.03.020
  113. Dysregulation Induce Premature Aging? vol.23, pp.6, 2008, https://doi.org/10.1152/physiol.00023.2008
  114. Nicotinic acetylcholine receptor expression and regulation in the rat kidney after ischemia-reperfusion injury vol.295, pp.3, 2008, https://doi.org/10.1152/ajprenal.90255.2008