• Title/Summary/Keyword: Oxidative decomposition

Search Result 64, Processing Time 0.023 seconds

Application of Combinatorial Catalysis Techniques for Hydrogen Generation Catalysts (수소 제조 촉매 개발을 위한 조합 촉매 기법의 활용)

  • Suh, Dong-Jin;Wolf, Eduardo E.
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.18 no.3
    • /
    • pp.309-316
    • /
    • 2007
  • 조합 및 고속탐색 실험 기법을 촉매 성분의 선정에 활용하였다. 소형 연료전지 작동을 위한 수소 생산에 가장 적합한 것으로 알려진 메탄을 산화 분해용 촉매의 특성을 적외선 화상 및 병렬형 반응 시스템으로 조사하였다. 반응의 모델을 먼저 제시하고 이를 근거로 Cu-Zn-Pd계 촉매를 선정하였다. 먼저 적외선 화상을 이용한 스크리닝을 위해서는 발열 효과라는 촉매 활성의 간접적인 현상을 보여줄 수 있는 적외선 민감 카메라를 이용하여 한 번에 50개의 시료 측정이 가능한 촉매 시료 배열을 설계하였다. 적외선 화상 결과로 높은 활성을 보이는 촉매 시료를 선정한 다음, 병렬형 반응 시스템과 단일 흐름 고정층 반응 시스템으로 선정된 촉매의 활성 특성을 조사 확인하였다. 본 연구에서 제시한 것과 같은 접근 방법으로 지속적으로 얻어진 결과를 반영하여 최적의 활성을 보이는 촉매 성분을 단기간에 찾아내고자 한다.

Development of Oxo-biodegradable Transparent Bio Films Using Biomass and Biodegradable Catalyst (바이오매스 및 생분해 촉매제를 이용한 산화생분해 투명 바이오 필름 개발)

  • You, Young-Sun;Kim, Young-Tae;Park, Dae-Sung;Choi, Sung-Wook
    • Clean Technology
    • /
    • v.23 no.2
    • /
    • pp.133-139
    • /
    • 2017
  • Bio-based plastics containing the biomass content higher than 25 wt% have been considered as environment-friendly materials due to their effects on the reduction in the $CO_2$ emission and petroleum consumption as well as biodegradability after use. In this study, poly vinyl chloride, plant-derived plasticizers, by adding a biodegradable catalyst was observed a change in the biodegradability and physical properties. To produce the oxidative decomposition transparent bio film, which is broken down in the initial percent elongation and physical properties such as tensile strength, it was to test the safety of the product as a food packaging material. Poly vinyl chloride, primary plasticizer, secondary plasticizer, anti fogging agent, the combined stabilizer were mixed in a high speed mixer, then extruded using an extrusion molding machine, after cooling, winding, to produce a oxidative decomposition transparent bio film and the control film, with a thickness of $12{\mu}m$ through winder role. Mechanical properties tensile strength, elongation, and the maximum load elongation and biodegradation test. Transparent bio film produced by biodegradation catalyst is compared with the control film. Tensile strength and elongation of films were found to be no significant difference. Further, as a result of the biodegradation test for 45 days based on the ASTM D6954-04 method, biodegrability of film is 61.4%.

Synthesis, Characterization, and Thermal Degradation of Oligo-2-[(pyridin-4-yl-)methyleneamino]pyridine-3-ol and Oligomer-Metal Complexes (올리고피리디닐메틸렌아미노피리딘올과 금속 착화물의 합성, 분석 및 열분해 특성 연구)

  • Kaya, Ismet;Gul, Murat
    • Polymer(Korea)
    • /
    • v.32 no.4
    • /
    • pp.295-304
    • /
    • 2008
  • This study examined the oxidative polycondensation reaction of 2-[(pyridin-4-yl-) methyleneamino] pyridine-3-ol (2-PMAP) using air $O_2$ and NaOCl oxidants at various temperatures and times in aqueous alkaline and acidic media. Under these reactions, the optimum reaction conditions using air $O_2$ and NaOCl oxidants were determined for 2-PMAP. The number-average molecular weight ($M_n$), weight average molecular weight ($M_w$), and polydispersity index (PDI) values of O-2-PMAP synthesized in aqueous alkaline media were found to be 960, 1230, and $1.281\;g\;mol^{-1}$ using NaOCl, and 1030, 1520, and $1.476\;g\;mol^{-1}$ using air $O_2$, respectively. At the optimum reaction conditions, the yield of O-2-PMAP in aqueous alkaline media was 92.50% and 85.70% for air $O_2$ and NaOCl oxidants, respectively. The yield of O-2-PMAP in aqueous acidic media was 88.5% and 88.0% for NaOCl and air $O_2$ oxidants, respectively. O-2-PMAP was characterized by $^1H-$, $^{13}C$-NMR, FT-IR, UV-vis, SEC, and elemental analysis. TGA-DTA analysis revealed O-2-PMAP and its oligomer metal complex compounds, such as $Co^{+2}$, $Ni^{+2}$, and $Cu^{+2}$, to be stable against thermal decomposition and their weight losses at $1000^{\circ}C$ were found to be 73.0, 58.0, 53.5%, and 50.0%, respectively. In addition, the antimicrobial activities of the monomer and oligomer were tested against E. Coli (ATCC 25922), E. Faecelis (ATCC 29212), P. Auroginasa (ATCC 27853), and S. Aureus (ATCC 25923).

Functional Polythiophene Bearing Hydroxyethyl Groups and Their Derivatives

  • Kim Hyun-Chul;Kim Jong-Seong;Baek Sung-Sik;Ree Moon-Hor
    • Macromolecular Research
    • /
    • v.14 no.2
    • /
    • pp.173-178
    • /
    • 2006
  • Poly(3-(2-hydroxyethyl)thiophene) (P3HET) was synthesized using oxidative coupling polymerization that involved the protecting and deprotecting of hydroxyl groups but not the chlorine substitution or oxidative decomposition of the hydroxyl groups. The resulting P3HET exhibited good solubility in aprotic solvents, in contrast to the insoluble polymer product synthesized directly from the monomer, 3-(2-hydroxyethyl)thiophene (3HET). P3HET had low conductivity due to the strong hydrogen bonding of its hydroxyl groups. The ester-functionalized poly(3-(2-acetoxyethyl)thiophene) and poly(3-(4-pentylbenzoateethyl)thiophene) were also prepared with reasonably high molecular weights in order to examine how this functionalization modified the physical and chemical properties of P3HET. These polymers exhibited better solubility in common solvents and higher conductivity than P3HET. All these polymers exhibited bathochromic shifts of their film state absorption maxima with respect to those found in the UV-visible spectra of their solution phases. The extent of the bathochromic shift was found to vary with the lengths of the side chains of the ester-functionalized polymers.

The Study on Prediction of Oxidative Decomposition Potential by Comparison between Simulation and Electrochemical Methods to Develop the Binder for High-voltage Lithium-ion Batteries (고전압용 리튬이차전지 바인더 개발을 위한 시뮬레이션 및 전기화학 평가 비교를 통한 산화분해전압 예측 연구)

  • Yu, Jee Min;Kashaev, Alexey;Lee, Maeng-Eun
    • Journal of the Korean Electrochemical Society
    • /
    • v.16 no.3
    • /
    • pp.177-183
    • /
    • 2013
  • As the development of available binder in the harsh conditions is needed, we propose the proper binder for high-voltage lithium-ion secondary batteries based on the quantum chemistry modeling. The optimized structures, HOMO (Highest Occupied Molecular Orbital) energies and ionization potentials of 4 binders, which were considered from monomer to tetramer, were investigated by the semi-empirical and DFT (Density Functional Theory) calculations. The results show that the ionization potential values by calculation tend to be close to the oxidation potentials from the measurement of linear sweep voltametry (LSV). The order of oxidative resistance from high value to low value is following: poly(hexafluropropylene), poly(vinylidene fluoride), poly(methyl acrylate) and poly(acryl amide). Also these results correspond with the experimental values. Thus, we find the reason why HOMO (Highest Occupied Molecular Orbital) energy of PHFP has the highest value than other binders by analysis of HOMO orbital structures.

Resistance Activity of Kyung-Ok-Ko on Thermal Stress in C. elegans (경옥고(瓊玉膏)의 열 스트레스에 의한 피부노화 억제 활성)

  • Won-Seok Jung;Sung-Young Cho;Hyun-Woo Cho;Hee-Woon Lee;Young‐IL Jeong;Hee-Taek Kim;Young-Bob Yu
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.37 no.1
    • /
    • pp.17-28
    • /
    • 2024
  • Objectives : This study was conducted to reveal the scientific mechanism of the anti-skin aging activity of Kyung-Ok-Ko(KOK), which is highly useful as a Korean traditional medicine and functional food. Methods : The skin wrinkle and aging inhibitory activity of KOK was confirmed through in vitro experiments of human dermal fibroblast neonatal cell(HDFn) and in vivo of C. elegans, and hairless mouse(SKH-1). Results : The amount of the C-terminus of the collagen precursor in the HDFn cell culture medium treated with KOK using an enzymes-linked immunoassay kit. The group treated with KOK 200㎍/㎖ was a 28.3% increase of collagen precursor compared to the control group. KOK showed inhibitory activity of MMP-1 compared to the control group at a concentration of 200㎍/㎖. In addition, KOK 200㎍/㎖ showed significant inhibitory activity of thermal stress and an oxidative stress compared to the control group in C. elegans. Furthermore, KOK showed a concentration-dependent(100mg/kg and 500mg/kg) anti-wrinkle formation effect in UV-irradiated hairless mouse(SKH-1). Additionally, when KOK was administered to UV-irradiated hairless mice, an increase in procollagen -1 and -3 genes expression was observed, and mmp-1 and mmp-9 genes, which increase collagen decomposition, decreased with the administration of KOK. Conclusions : The skin aging inhibition mechanism of Kyung-Ok-Ko(KOK) is presumed to be achieved through suppressing thermal stress and oxidative stress, suppressing mmp-1 and mmp-9 genes, and increasing procollagen-1 and procollagen-3.

Oxidation of Chloroethenes by Heat-Activated Persulfate (과황산의 열적활성화 및 염소계용제의 산화분해)

  • Zhang, Hailong;Kwon, Hee-Won;Choi, Jeong-Hak;Kim, Young-Hun
    • Journal of Environmental Science International
    • /
    • v.26 no.11
    • /
    • pp.1201-1208
    • /
    • 2017
  • Oxidative degradation of chlorinated ethenes was carried out using heat-activated persulfate. The activation rate of persulfate was dependent on the temperature and the activation reaction rate could be explained based on the Arrhenius equation. The activation energy of persulfate was 19.3 kcal/mol under the assumption that the reaction between the sulfate radical and tricholoroethene (TCE) is very fast. Activation could be achieved at a moderate temperature, so that the adverse effects due to high temperature in the soil environment were mitigated. The reaction rate of TCE was directly proportional to the concentration of persulfate, indicating that the remediation rate can be controlled by the concentration of the injected persulfate. The solution was acidized after the oxidation, and this was dependent on the oxidation temperature. The consumption rate of persulfate was high in the presence of the target organic, but the self-decomposition rate became very low as the target was completely removed.

Characteristic behaviors of ozone decomposition and oxidation of pharmaceuticals during ozonation of surface waters in Ulsan (울산시 상수원수에서의 오존분해 특성 및 의약물질 분해 거동 연구)

  • Lee, Hye-Jin;Lee, Hongshin;Lee, Changha
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.1
    • /
    • pp.39-47
    • /
    • 2013
  • This study demonstrates the oxidative degradation of pharmaceutical compounds during ozonation of surface waters in Ulsan. Diclofenac, carbamazepine, bezafibrate, and ibuprofen were selected as surrogate pharmaceutical compounds, and ozonation experiments were performed using raw waters collected from the Sayeon Dam and the Hoeya Dam in Ulsan. Diclofenac and carbamazepine which have high reactivity with molecular ozone showed higher removal efficiencies than bezafibrate and ibuprofen during ozonation. The addition of tert-butanol, a hydroxyl radical scavenger, increased the removal efficiencies of diclofenac and carbamazepine by increasing the ozone exposure. However, the oxidation of bezafibrate and ibuprofen was inhibited by the presence of tert-butanol due to the suppression of the exposure to hydroxyl radical. The elimination of the selected pharmaceuticals could be successfully predicted by the kinetic model base on the $R_{ct}$ concept. Depending on the experimental condition, $R_{ct}$ values were determined to be $(1.54{\sim}3.32){\times}10^{-7}$ and $(1.19{\sim}3.04){\times}10^{-7}$ for the Sayeon Dam and the Hoeya Dam waters, respectively. Relatively high $R_{ct}$ values indicate that the conversion of $O_3$ into $^{\cdot}OH$ is more pronounced for surface waters in Ulsan compared to other water sources.

Weathering of coal and kerogen : implications on the geochmical carbon and oxygen cycle and the environmental geochemical reactions (탄질 유기물과 케로젠의 풍화 : 탄소와 산소의 지화학적 순환 및 환경화학적 반응에 미치는 영향)

  • 장수범
    • Economic and Environmental Geology
    • /
    • v.32 no.1
    • /
    • pp.101-111
    • /
    • 1999
  • Sedimentary organic matter, exposed to continental surficial environment, reacts with oxygen supplied from the atmosphee and forms carbon-containing oxidation products. Knowledge of the rate and mechanisms of sedimentary organic matter weathering is important because it is one of the major controls on atmospheric oxygen level through geologic time. Under the abiological conditions, the oxidation rate of coal organic matter by molecular oxygen is enhanced by the increase of oxygen concentration and temperature. At ambient temperature and pressure, aqueous coal oxidation results in the formation of dissolved $CO_2$ dissolved organic carbon and solid oxidation products which are all quantitatively significant reaction products. The effects of pH, ultraviolet light, and microbial activity on the weathering of sedimentary organic matter are poorly contrained. Based on the results of geochmical and environmental studies, it is believed that the photochemical reaction should play an important role in the decomposition and oxidation of sedimentary organic matter removed from the weathering profile. At higher pH conditions, the production rate of DOC can be accelerated due to base catalysis. These high molecular weight oranic matter can react with man-made pollutants such as heavy metal ions via adsorption/desorption or ion exchange reactions. The effect of microbial activity on the oxidative weathering of sedimentary organic matter is poorly understood and remains to be studied.

  • PDF

Antioxidant Activity of Lignan Compounds Extracted from Roasted Sesame Oil on the Oxidation of Sunflower Oil

  • Lee, Jin-Young;Kim, Moon-Jung;Choe, Eun-Ok
    • Food Science and Biotechnology
    • /
    • v.16 no.6
    • /
    • pp.981-987
    • /
    • 2007
  • Effects of lignan compounds (sesamol, sesamin, and sesamolin) extracted from roasted sesame oil on the autoxidation at $60^{\circ}C$ for 7 days and thermal oxidation at $180^{\circ}C$ for 10 hr of sunflower oil were studied by determining conjugated dienoic acid (CDA) contents, p-anisidine values (PAV), and fatty acid composition. Contents of lignan compounds during the oxidations were also monitored. ${\alpha}$-Tocopherol was used as a reference antioxidant. Addition of lignan compounds decreased CDA contents and PAY of the oils during oxidation at $60^{\circ}C$ or heating at $180^{\circ}C$, which indicated that sesame oil lignans lowered the autoxidation and thermal oxidation of sunflower oil. Sesamol was the most effective in decreasing CDA formation and hydroperoxide decomposition in the auto- and thermo-oxidation of oil, and its antioxidant activity was significantly higher than that of ${\alpha}$-tocopherol. Sesamol, sesamin, and sesamolin added to sunflower oil were degraded during the oxidations of oils, with the fastest degradation of sesamol. Degradation of sesamin and sesamolin during the oxidations of the oil were lower than that of ${\alpha}$-tocopherol. The results strongly indicate that the oxidative stability of sunflower oil can be improved by the addition of sesamol, sesamin, or sesamolin extracted from roasted sesame oil.