DOI QR코드

DOI QR Code

The Study on Prediction of Oxidative Decomposition Potential by Comparison between Simulation and Electrochemical Methods to Develop the Binder for High-voltage Lithium-ion Batteries

고전압용 리튬이차전지 바인더 개발을 위한 시뮬레이션 및 전기화학 평가 비교를 통한 산화분해전압 예측 연구

  • Received : 2013.07.25
  • Accepted : 2013.08.19
  • Published : 2013.08.31

Abstract

As the development of available binder in the harsh conditions is needed, we propose the proper binder for high-voltage lithium-ion secondary batteries based on the quantum chemistry modeling. The optimized structures, HOMO (Highest Occupied Molecular Orbital) energies and ionization potentials of 4 binders, which were considered from monomer to tetramer, were investigated by the semi-empirical and DFT (Density Functional Theory) calculations. The results show that the ionization potential values by calculation tend to be close to the oxidation potentials from the measurement of linear sweep voltametry (LSV). The order of oxidative resistance from high value to low value is following: poly(hexafluropropylene), poly(vinylidene fluoride), poly(methyl acrylate) and poly(acryl amide). Also these results correspond with the experimental values. Thus, we find the reason why HOMO (Highest Occupied Molecular Orbital) energy of PHFP has the highest value than other binders by analysis of HOMO orbital structures.

고전압에서도 사용 가능한 바인더 개발에 대한 요구가 증대됨에 따라 이에 적합한 내산화성이 우수한 바인더를 양자화학적 모델링에 기반하여 제안하고자 하였다. 각 고분자 poly(acryl amide)(PAM), poly(methyl acrylate)(PMA), poly(vinylidene fluoride)(PVDF), poly(hexafluropropylene)(PHFP)에 대하여 반경험적 방법(Semi-empirical method) 및 밀도범함수 이론(Density Functional Theory, DFT) 방법을 이용하여 단량체부터 사량체까지의 고분자 바인더에 대한 최고 점유 분자 궤도함수(Highest occupied molecular orbital, HOMO) 에너지와 이온화 에너지(Ionization Potential, IP) 값을 구하여 실험 값과 비교하였다. 밀도범함수 방법으로 해석한 결과, PHFP, PVDF, PMA, PAM 순으로 고분자의 내산화성이 좋은 것으로 시뮬레이션을 통해 예측되었고, 이러한 결과는 선형 훑음 전압-전류법(Linear Sweep Voltametry, LSV)으로부터 얻은 실험값과 일치하였다. 또한 이 결과는 HOMO 오비탈의 구조를 분석하여 내산화성이 좋은 원인을 규명하였다.

Keywords

References

  1. W. Wei, J. Wang, L. Zhou, J. Yang, B. Schumann, Y. NuLi, 'CNT enhanced sulfur composite cathode material for high rate lithium battery' Electrochem. Commun., 13, 399 (2011). https://doi.org/10.1016/j.elecom.2011.02.001
  2. M. S. Whittingham, 'Lithium Batteries and Cathode Materials' Chem. Rev., 104, 4271 (2004). https://doi.org/10.1021/cr020731c
  3. M. Armand, J. M. Tarascon, 'Building Better Batteries' Nature, 451, 652 (2008). https://doi.org/10.1038/451652a
  4. J. M. Tarascon, M. Armand, 'Why Li Ion Batteries' Nature, 414, 359 (2001). https://doi.org/10.1038/35104644
  5. M. H. Ryou, D. J. Lee, J. N. Lee, Y. M. Lee, J. K. Park, J. W. Choi, 'Excellent Cycle Life of Lithium-Metal Anodes in Lithium-Ion Batteries with Mussel-Inspired Polydopamine-Coated Separators' Adv. Energy Mater., 2, 645 (2012). https://doi.org/10.1002/aenm.201100687
  6. P. G. Balakshrishnan, R. Ramesh, and T. P. Kumar, 'Safety mechanisms in lithium-ion batteries' J. Power Sources, 155, 401 (2006). https://doi.org/10.1016/j.jpowsour.2005.12.002
  7. T. Hayes, 'Root cause for failures in Li-ion batteries', 24th International Battery Seminar & Exhibit, Florida (2007).
  8. C. Sigala, D. Guyomard, A. Verbaere, Y. Piffard, M. Tournoux, 'Positive electrode materials with high operating voltage for lithium batteries: $LiCr_{y}Mn_{2y}O_{4}$ ($0 \leq y \leq 1$)' Solid State Ionics, 81, 167 (1995). https://doi.org/10.1016/0167-2738(95)00163-Z
  9. H. Kawai, M. Nagata, M. Tabuchi, H. Tukamoto, A. R. West, 'Novel 5 V Spinel Cathode $Li_{2}FeMn_{3}O_{8}$ for Lithium Ion Batteries' Chem. Mater., 10, 3266 (1998). https://doi.org/10.1021/cm9807182
  10. F. Wang, J. Yang, Y. NuLi, J. Wang, 'Highly promoted electrochemical performance of 5 V $LiCoPO_{4}$ cathode material by addition of vanadium' J. Power Sources, 195, 6884 (2010). https://doi.org/10.1016/j.jpowsour.2010.04.071
  11. M. Wachtler, M. Winter, J. O. Besenhard, 'Anodic materials for rechargeable Li-batteries' J. Power Sources, 105, 151 (2002). https://doi.org/10.1016/S0378-7753(01)00934-X
  12. Z. Chen, V. Chevrier, L. Christensen, J. R. Dahn, 'Design of Amorphous Alloy Electrodes for Li-Ion Batteries' Electrochem. Solid-State Lett., 7, A310 (2004). https://doi.org/10.1149/1.1792262
  13. J. Hassoun, S. Panero, P. Simon, P. L. Taberna, B. Scrosati, 'High-Rate, Long-Life Ni-Sn Nanostructured Electrodes for Lithium-Ion Batteries' Adv. Mater., 19, 1632 (2007). https://doi.org/10.1002/adma.200602035
  14. K. Xu, C. A. Angell, 'High Anodic Stability of a New Electrolyte Solvent: Unsymmetric Noncyclic Aliphatic Sulfone' J. Electrochem. Soc., 145, L70 (1998). https://doi.org/10.1149/1.1838419
  15. X. Sun, C. A. Angell, 'Doped sulfone electrolytes for high voltage Li-ion cell applications' Electrochem. Commun., 11, 1418 (2009). https://doi.org/10.1016/j.elecom.2009.05.020
  16. Z. Zhang, L. Hu, H. Wu, W. Weng, M. Koh, P. C. Redfern, L. A. Curtiss, K. Amine, 'Fluorinated electrolytes for 5 V lithium-ion battery chemistry' Energy Environ. Sci., 6, 1806 (2013). https://doi.org/10.1039/c3ee24414h
  17. Z. Chen , L. Christensen , J. Dahn, 'Large volumechange electrodes for Li-ion batteries of amorphous alloy particles held by elastomeric tethers' Electrochem. Commun., 5, 919 (2003). https://doi.org/10.1016/j.elecom.2003.08.017
  18. 박정기 외, "리튬이온 이차전지의 원리 및 응용", 239, 홍릉과학출판사, 서울 (2010).
  19. T. M. Bandhauer, S. Garimella, T. F. Fuller, 'A Critical Review of Thermal Issues in Lithium-Ion Batteries' J. Electrochem. Soc., 158, 3, R1 (2011). https://doi.org/10.1149/1.3515880
  20. M. H. Ryou, J. Kim, I. Lee, S. Kim, Y. K. Jeong, S. Hong, J. H. Ryu, T. S. Kim, J. K. Park, H. Lee, J. W. Choi, 'Mussel-Inspired Adhesive Binders for High- Performance Silicon Nanoparticle Anodes in Lithium-Ion Batteries' Adv. Mater., 25, 1571 (2013). https://doi.org/10.1002/adma.201203981
  21. A. Magasinski, B. Zdyrko, I. Kovalenko, B. Hertzberg, R. Burtovyy, C. F. Huebner, T. F. Fuller, I. Luzinov, G. Yushin, 'Toward Efficient Binders for Li-Ion Battery Si- Based Anodes: Polyacrylic Acid' ACS Appl. Mater. Interfaces, 2, 3004 (2010). https://doi.org/10.1021/am100871y
  22. Z. Chen, L. Christensen, J. R. Dahn, 'Comparison of PVDF and PVDF-TFE-P as Binders for Electrode Materials Showing Large Volume Changes in Lithium- Ion Batteries' J. Electrochem. Soc., 150, 8, A1073 (2003). https://doi.org/10.1149/1.1586922
  23. J. Chen, J. Liu, Y. Qi, T. Sun, X. Li, 'Unveiling the Roles of Binder in the Mechanical Integrity of Electrodes for Lithium-Ion Batteries' J. Electrochem. Soc., 160, 9, A1502 (2013). https://doi.org/10.1149/2.088309jes
  24. B. Delley, 'From molecules to solids with the DMol3 approach' J. Chem. Phys., 113, 7756 (2000). https://doi.org/10.1063/1.1316015
  25. B. Delley, 'DMol3 DFT studies: from molecules and molecular environments to surfaces and solids', Comput. Mater. Sci., 17, 122 (2000). https://doi.org/10.1016/S0927-0256(00)00008-2
  26. B. Delley, 'An all-electron numerical method for solving the local density functional for polyatomic molecules' J. Chem. Phys., 92, 508 (1990). https://doi.org/10.1063/1.458452
  27. B. Bernd, U. W. Grummt, 'Semiempirical Calculations of First-Order Hyperpolarizabilities: Testingthe Performance of Different Methods in Comparison to Experiment' J. Phys. Chem. B., 102, 664 (1998). https://doi.org/10.1021/jp970592g
  28. J. E. Alliott, Y. Shibuta, 'A semi-empirical molecular orbital study of freestanding and fullerene-encapsulated Mo nanoclusters' Molecular Simulation, 34, 891 (2008). https://doi.org/10.1080/08927020802258724
  29. S. R. Stanislav, C. X. Yin, M. R. Gray, J. M. Stryker, S. Gusarov, A. Kovalenko, 'Computational and Experimental Study of the Structure, Binding Preferences, and Spectroscopy of Nickel(II) and Vanadyl Porphyrins in Petroleum' J. Phys. Chem. B., 114, 2180 (2010). https://doi.org/10.1021/jp908641t
  30. M. J. Frisch et al., Gaussian, Inc., Wallingford CT (2010).
  31. J. P. Perdew, et al., 'Generalized gradient approximation made simple' Phys. Rev. B., 78, 1396 (1997).
  32. A. D. Becke, 'Density-functional thermochemistry. III. The role of exact exchange' J. Chem. Phys., 98, 5648. (1993). https://doi.org/10.1063/1.464913
  33. C. Lee, W. Yang, R. G. Parr, 'Development of the Colle- Salvetti conelation energy formula into a functional of the electron density' Phys. Rev. B., 37, 785. (1988). https://doi.org/10.1103/PhysRevB.37.785
  34. A. J. Bard, L. R. Faulkner, "Electrochemical methods: fundamentals and applications, 2nd ed." Wiley New York (2001).