• Title/Summary/Keyword: Oxidation of Al

검색결과 883건 처리시간 0.025초

이온플레이팅법으로 제조된 TiAlLaN계 박막의 산화속도 (Oxidation Rates of TiAlLaN Thin Films Deposited by Ion Plating)

  • 서성만;이기선;이기안
    • 한국재료학회지
    • /
    • 제14권3호
    • /
    • pp.163-167
    • /
    • 2004
  • TiAl(La)N thin films were oxidized in vacuum of about 7 Pa to reduce the oxidation of WC-Co as a substrate. The oxidation rate constants of the thin films were quantified by an assumption of parabolic oxidation. Increasing AI content significantly decreased the parabolic oxidation rate constant. A simultaneous addition of AI and La was more effective to reduce the oxidation rate. The parabolic oxidation rate constant of $Ti_{0.66}$ $Al_{0.32}$ $La_{ 0.02}$N thin film at 1273 K showed about ten times lower than that of TiN. The addition of a small amount of La with Al induced the preferential formation of dense $\alpha$ $-Al_2$$O_3$ film in oxide film, leading to the abrupt reduction of oxidation rate.

Ti-Al-N과 Ti-Al-Si-N 코팅막의 상 특성 및 내산화 거동 (Phase Characterization and Oxidation Behavior of Ti-Al-N and Ti-Al-Si-N Coatings)

  • 김정욱;전준하;조건;김광호
    • 한국표면공학회지
    • /
    • 제37권3호
    • /
    • pp.152-157
    • /
    • 2004
  • Ti-Al-N ($Ti_{75}$ $Al_{25}$ N) and Ti-Al-Si-N ($Ti_{69}$ $Al_{23}$ $Si_{8}$N) coatings synthesized by a DC magnetron sputtering technique were studied comparatively with respect to phase characterization and high-temperature oxidation behavior. $Ti_{69}$ $Al_{23}$ $Si_{ 8}$N coating had a nanocomposite microstructure consisting of nanosized(Ti,Al,Si)N crystallites and amorphous $Si_3$$N_4$, with smooth surface morphology. Ti-Al-N coating of which surface $Al_2$$O_3$ layer formed during oxidation suppressed further oxidation. It was sufficiently stable against oxidation up to about $700^{\circ}C$. Ti-Al-Si-N coating showed better oxidation resistance because both surface Ab03 and near-surface $SiO_2$ layers suppressed further oxidation. XRD, GDOES, XPS, and scratch tests were performed.

SULFIDATION PROCESSING AND Cr ADDITION TO IMPROVE OXIDATION RESISTANCE OF Ti-Al INTERMETALLIC COMPOUNDS AT ELEVATED TEMPERATURES

  • Narita, Toshio;Izumi, Takeshi;Yatagai, Mamoru;Yoshioka, Takayuki
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 1999년도 춘계학술발표회 초록집
    • /
    • pp.5-5
    • /
    • 1999
  • A novel process is proposed to improve oxidation resistance of Ti-Al intermetallic compounds at elevated temperatures by both Cr addition and pre-sulfidation, where TiAl alloys withlor without Cr addition were sulfidized at 1173K for 86.4ks at a 1.3 Pa sulfur partial pressure in a $H_2-H_2S$ gas mixture. The pre-sulfidation treatment formed a thin Cr-Al alloy layer as well as 7~10 micrometer $TiAl_3$ and $TiAl_2$ layer, due to selective sulfidation of Ti. Oxidation resistance of the pre-sulfidation processed TiAl 4Cr alloy was examined under isothermal and heat cycle conditions between room temperature and 1173K in air. Changes in $TiAl_3$ into $TiAl_2$ and then TiAl phases as well as their effect on oxidation behavior were investigated and compared with the oxidation behavior of the TiAl-4Cr alloy as TiAl and pre-sulfidation processed TiAl aHoys. After oxidation for up to 2.7Ms a protective $Al_2O_3$ scale was formed, and the pre-formed $TiAl_3$ changed into $TiAl_2$ and the $Al_2Cr$ phase changed into a CrAlTi phase between the $Al_2O_3$ scale and $TiAl_2$ layer. The pre-sulfidation processed TiAl-4Cr alloy had very good oxidation resistance for longer times, up to 2.7 Ms, in contrast to those observed for the pre-sulfidation processed TiAl alloy where localized oxidation occurred after 81 Oks and both the TiAl and TiAl-4Cr alloys themselves corroded rapidly from the initial stage of oxidation

  • PDF

Ti-33.8wt% Al 금속간 화합물의 고온 산화거동 (High temperature oxidation behavior of Ti-33.8wt% Al intermetallic compounds)

  • 최송천;조현준;이동복
    • 한국표면공학회지
    • /
    • 제26권5호
    • /
    • pp.235-244
    • /
    • 1993
  • The oxidation behavior of a two-phase(Ti3Al+TiAl) intermetallic compound, Ti-33.8wt%Al, has been in-vestigated in air at 800, 900 and $^1000{\circ}C$. Though the isothermal oxidation behavior followed a parabolic law up to 100$0^{\circ}C$ indicating that protective oxide scales were formed, the cyclic oxidation behavior followed a lin-ear law in the entire temperature range tested because flaky or stratified scales were usually spalled from the surface during cooling. During oxidation at 80$0^{\circ}C$, the alloy showed excellent oxidation resistance because continuous protective Al2O3 films were formed on the outermost surface of the alloy. However, above $900^{\circ}C$, the oxidation resistance of the alloy was decreased gradually because relatively non-protective TiO2 scales as well as some of Al2O3 scales were formed on the outer oxide scale. The oxidation mechanism of the alloy at different temperature was proposed.

  • PDF

Ti-Al-N코팅층의 내산화 특성에 관한 연구 (Study on the Oxidation Resistance of Ti-Al-N Coating Layer)

  • 김충완;김광호
    • 한국세라믹학회지
    • /
    • 제34권5호
    • /
    • pp.512-518
    • /
    • 1997
  • The high temperature oxidation behaviors of titanium nitride films prepared by PACVD technique were studied in the temperature range of from 50$0^{\circ}C$ to 80$0^{\circ}C$ under air atmosphere. Ti0.88Al0.12N film, which showed the excellent microhardness from the previous work, was investigated on its oxidation resistance compared with pure TiN film. Ti-Al-N film showed superior oxidation resistance up to $700^{\circ}C$, whereas TiN film was fast oxidized into rutile TiO2 crystallites from at 50$0^{\circ}C$. It was found that an amorphous layer having AlxTiyOz formula was formed on the surface region due to outward diffusion of Al ions at the initial stage of oxidation. The amorphous oxide layer played a role as a barrier against oxygen diffusion, protected the remained nitride layer from further oxidation, and thus, resulted in the high oxidation resistive characteristics of Ti-Al-N film.

  • PDF

메모리소자를 위한 Ti1-xAlxN 방지막의 산화 거동 (Oxidation Behavior of Ti1-xAlxN Barrier Layer for Memory Devices)

  • 박상식
    • 한국재료학회지
    • /
    • 제12권9호
    • /
    • pp.718-723
    • /
    • 2002
  • $Ti_{1-x}$ $Al_{ x}$N thin films as barrier layer for memory devices application were deposited by reactive magnetron sputtering. The crystallinity, micro-structure, oxidation resistance and oxidation mechanism of films were investigated as a function of Al content. Lattice parameter and grain size of thin films were decreased with increasing the Al content Oxidation of the film with higher Al content is slow and then, total oxide thickness is thinner than that of lower Al content film. Oxide layer formed on the surface is AlTiNO layer. Oxidation of $Ti_{1-x}$ /$Al_{x}$ N barrier layer is diffusion limited process and thickness of oxide layer with oxidation time increased with a parabolic law. The activation energy of oxygen diffusion, Ea and diffusion coefficient, D of $Ti_{0.74}$ /X$0.74_{0.26}$N film is 2.1eV and $10^{-16}$ ~$10^{-15}$ $\textrm{cm}^2$/s, respectively. $_Ti{1-x}$ /$Al_{x}$ XN barrier layer showed good oxidation resistance.

저수축 반응소결 알루미나 세라믹스의 제조 (Fabrication of Low-Shrinkage Reaction-Bonded Alumina Ceramics)

  • 박정현;이현권;정경원;염강섭
    • 한국세라믹학회지
    • /
    • 제29권6호
    • /
    • pp.419-430
    • /
    • 1992
  • Fabrication possibility of low-shrinkage alumina without oxidation and wetting agent was presented on the basis of observation about oxidation behavior, microstructure and physical characteristics of such reaction agents free Al2O3-Al system. The composition less than Al 10w/o where Al can act as a sintering agent for Al2O3 was excluded. Under the condition of present experiments oxidation of Al2O3-Al system was dependent not on holding time but mainly on oxidation temperature. In thes case of Al powder not comminuted effectively during powder mixing of Al2O3-Al, columnar structure which would act as a hindrance to the densification during sintering developed more during oxidation with higher Al contents, and which made the fabrication of low-shrinkage Al2O3 ceramics impossible. If Al powder was comminuted effectively due to co-mixed Al2O3 characteristics, densification was improved because of no columnar structure and made the fabrication of sintered body with -2.7% dimensional change and 81% relative density possible. As a result, it is possible to fabricate dense low-shrinkage Al2O3 ceramics without oxidation and wetting agent under conditions such as smaller particle size of Al, Al contents below 50v/o, higher green density of Al2O3-Al compact and the use of Al2O3 powder used for high-density ceramics.

  • PDF

나노 다층 TiAlSiN 박막의 고온 산화 (High-temperature Oxidation of Nano-multilayered TiAlSiN Filems)

  • 이동복;김민정
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2016년도 추계학술대회 논문집
    • /
    • pp.189-189
    • /
    • 2016
  • In this study, the Al-rich AlTiSiN thin films that consisted of TiN/AlSiN nano-multilayers were deposited on the steel substrate by magnetron sputtering, and their high-temperature oxidation behavior was investigated, which has not yet been adequately studied to date. Since the oxidation behavior of the films depends sensitively on the deposition method and deposition parameters which affect their crystallinity, composition, stoichiometry, thickness, surface roughness, grain size and orientation, the oxidation studies under various conditions are imperative. AlTiSiN nano-multilayer thin films were deposited on a tool steel substrate, and their oxidation behavior of was investigated between 600 and $1000^{\circ}C$ in air. Since the amount of Al which had a high affinity for oxygen was the largest in the film, an ${\alpha}-Al_2O_3-rich$ scale formed, which provided good oxidation resistance. The outer surface scale consisted of ${\alpha}-Al_2O_3$ incoporated with a small amount of Ti, Si, and Fe. Below this outer surface scale, a thin ($Al_2O_3$, $TiO_2$, $SiO_2$)-intermixed scale formed by the inwardly diffusing oxygen. The film oxidized slower than the $TiO_2-forming$ kinetics and TiN films, but faster than ${\alpha}-Al_2O_3-forming$ kinetics. During oxidation, oxygen from the atmosphere diffused inwardly toward the reaction front, whereas nitrogen and the substrate element of iron diffused outwardly to a certain extent.

  • PDF

Fe-(21.8, 24.1, 27.2)%Al 금속간 화합물의 고온 산화 (The oxidation of Fe-(21.8, 24.1, 27.2)%Al intermetallics)

  • 김기영;이동복
    • 한국표면공학회지
    • /
    • 제33권5호
    • /
    • pp.365-372
    • /
    • 2000
  • Pure $Fe_3$Al alloys with three different compositions of Fe-21.8%Al, Fe-24.1%Al and Fe-27.2%Al were prepared by vacuum induction melting followed by homogenization and hot forging. The long-time oxidation behavior of the prepared alloys was studied at 1073, 1273 and 1473k in air. The oxidation resistance greatly increased with an increase in Al contents. Thin and uniform oxide scales were always formed on Fe-27.2%Al, while thick and fragile oxide scales were formed on Fe-(21.8, 24.1%)Al. Internal oxidation was observed in Fe-(21.8, 24.1%)Al, when oxidized above 1273K. The major oxidation product of all the oxidized alloys was always $\alpha$-$Al_2$$O_3$.

  • PDF

Effect of Mo and Mn Addition on the Oxidation Behavior of Binary Ti-Al Alloys

  • Han, Chang-Suk;Jin, Sung-Yooun;Bang, Hyo-In
    • 한국재료학회지
    • /
    • 제28권6호
    • /
    • pp.361-364
    • /
    • 2018
  • Binary Ti-Al alloys below 51.0 mass%Al content exhibit a breakaway, transferring from parabolic to linear rate law. The second $Al_2O_3$ layer might have some protectiveness before breakaway. Ti-63.1 mass%Al oxidized at 1173 K under parabolic law. Breakaway oxidation is observed in every alloy, except for Ti-63.1 mass%Al. After breakaway, oxidation rates of the binary TiAl alloys below 34.5 mass%Al obey almost linear kinetics. The corrosion rate of Ti-63.1 mass%Al appears to be almost parabolic. As content greater than 63.0 mass% is found to be necessary to form a protective alumina film. Addition of Mo improves the oxidation resistance dramatically. No breakaway is observed at 1123 K, and breakaway is delayed by Mo addition at 1173 K. At 1123 K, no breakaway, but a parabolic increase in mass gain, are observed in the Mo-added TiAl alloys. The binary Ti-34.5 mass%Al exhibits a transfer from parabolic to linear kinetics. At 1173 K, the binary alloys show vary fast linear oxidation and even the Mo-added alloys exhibit breakaway oxidation. The 2.0 mass%Mo-added TiAl exhibits a slope between linear and parabolic. At values of 4.0 and 6.0 mass% added TiAl alloys, slightly larger rates are observed than those for the parabolic rate law, even after breakaway. On those alloys, the second $Al_2O_3$ layer appears to be persistently continuous. Oxidation resistance is considerably degraded by the addition of Mn. Mn appears to have the effect of breaking the continuity of the second $Al_2O_3$ layer.