• Title/Summary/Keyword: Oxidation Mechanism

Search Result 666, Processing Time 0.029 seconds

Electrochemical Oxidation of Phenol using Persulfate and Nanosized Zero-valent Iron (과황산염과 나노영가철을 이용한 페놀의 전기화학적 산화)

  • Kim, Cheolyong;Ahn, Jun-Young;Kim, Tae Yoo;Hwang, Inseong
    • Journal of Soil and Groundwater Environment
    • /
    • v.22 no.2
    • /
    • pp.17-25
    • /
    • 2017
  • The efficiency and mechanism of electrochemical phenol oxidation using persulfate (PS) and nanosized zero-valent iron (NZVI) were investigated. The pseudo-first-order rate constant for phenol removal by the electrochemical/PS/NZVI ($1mA^*cm^{-2}/12$ mM/6 mM) process was $0.81h^{-1}$, which was higher than those of the electrochemical/PS and PS/NZVI processes. The electrochemical/PS/NZVI system removed 1.5 mM phenol while consuming 6.6 mM PS, giving the highest stoichiometric efficiency (0.23) among the tested systems. The enhanced phenol removal rates and efficiencies observed for the electrochemical/PS/NZVI process were attributed to the interactions involving the three components, in which the electric current stimulated PS activation, NZVI depassivation, phenol oxidation, and PS regeneration by anodic or cathodic reactions. The electrochemical/PS/NZVI process effectively removed phenol oxidation products such as hydroquinone and 1,4-benzoquinone. Since the electric current enhances the reactivities of PS and NZVI, process performance can be optimized by effectively manipulating the current.

Structural Evolution and Electrical Properties of Highly Active Plasma Process on 4H-SiC

  • Kim, Dae-Kyoung;Cho, Mann-Ho
    • Applied Science and Convergence Technology
    • /
    • v.26 no.5
    • /
    • pp.133-138
    • /
    • 2017
  • We investigated the interface defect engineering and reaction mechanism of reduced transition layer and nitride layer in the active plasma process on 4H-SiC by the plasma reaction with the rapid processing time at the room temperature. Through the combination of experiment and theoretical studies, we clearly observed that advanced active plasma process on 4H-SiC of oxidation and nitridation have improved electrical properties by the stable bond structure and decrease of the interfacial defects. In the plasma oxidation system, we showed that plasma oxide on SiC has enhanced electrical characteristics than the thermally oxidation and suppressed generation of the interface trap density. The decrease of the defect states in transition layer and stress induced leakage current (SILC) clearly showed that plasma process enhances quality of $SiO_2$ by the reduction of transition layer due to the controlled interstitial C atoms. And in another processes, the Plasma Nitridation (PN) system, we investigated the modification in bond structure in the nitride SiC surface by the rapid PN process. We observed that converted N reacted through spontaneous incorporation the SiC sub-surface, resulting in N atoms converted to C-site by the low bond energy. In particular, electrical properties exhibited that the generated trap states was suppressed with the nitrided layer. The results of active plasma oxidation and nitridation system suggest plasma processes on SiC of rapid and low temperature process, compare with the traditional gas annealing process with high temperature and long process time.

The Characteristics of Atrazine Decomposition by Photo-chemical Oxidation Process (광화학적 산화처리에 의한 Atrazine 분해 특성)

  • Choi, Hyun-Jin;Park, Jong-Il;Lee, Tae-Jin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.8
    • /
    • pp.829-836
    • /
    • 2005
  • In this study, the characteristics of atrazine decompositon with photo-chemical oxidation process was investigated by the oxidation products analysis. The main products of the process were OIET(2-hydroxy-4-ethylamino-6-isopropylamino s-triazine), OIAT(2-hydroxy-4-amino-6-isopropylamino s-triazine) and OAAT(2-hydroxy-4,6-diamino-s-triazine), resulting i n dechlorination or hydroxylation as the main mechanism of the photo-chemical oxidation process. Through the material balance analysis of TOC and chloride ion in the aqueous solution, it was concluded that mineralization of the atrazine was not occurred but the dechlorination of atrazine had been completed.

A Study on Laser Assisted Machining for Silicon Nitride Ceramics (I) - Preheating Characteristics and Oxidation Behaviors of Silicon Nitride Ceramics with Machining Parameters - (질화규소 세라믹의 레이저 예열선삭에 관한 연구 (I) - 공정변수에 따른 질화규소의 예열특성 및 산화거동 -)

  • Kim, Jong-Do;Lee, Su-Jin;Shu, Jeong;Lee, Jae-Hoon
    • Journal of Welding and Joining
    • /
    • v.28 no.4
    • /
    • pp.61-66
    • /
    • 2010
  • Silicon nitride is widely used as an engineering ceramics because it has high strength, abrasion resistance and corrosion resistance even at high temperature. However, machining of silicon nitride is difficult due to its high hardness and brittleness. Laser assisted machining(LAM) allows effective cutting using CBN tool by locally heating the cutting part to the softening temperature of YSiAlON using the laser beam. The effect of preheating depending on process parameters were studied to find out the oxidation mechanism. If silicon nitride is sufficiently preheated, the surface is oxidized and $N_2$ gas is formed and escapes from the material, thereby making the cutting process more advantageous. During laser preheating process before machining, high temperature results in strong oxidation which makes the bloating, silicate layers and micro cracks. Using the results of these experiments, preheating characteristics and oxidation behavior were found out.

Study on the Recycling of Nuclear Graphite after Micro-Oxidation

  • Liu, Juan;Wang, Chen;Dong, Limin;Liang, Tongxiang
    • Nuclear Engineering and Technology
    • /
    • v.48 no.1
    • /
    • pp.182-188
    • /
    • 2016
  • In this paper, a feasible strategy for the recycling of nuclear graphite is reported, based on the formation mechanism and the removal of carbon-14 by micro-oxidation. We investigated whether ground micro-oxidation graphite could be used as a filler to make new recycled graphite and which graphite/pitch coke ratio will give the recycled graphite outstanding properties (e.g., apparent density, flexural strength, compressive strength, and tensile strength). According to the existing properties of nuclear graphite, the ratio of graphite to pitch coke should not exceed 3. The recycled reactor graphite has been proven superior in density, strength, and thermal conductivity. The micro-oxidation process enhances the strength of the recycled graphite because there are more pores and unsmooth surfaces on the oxidized graphite particles, which is beneficial for the access of the pitch binder and leads to efficient joint adhesion among the graphite particles.

Oxide Layer Growth in High-Pressure Steam Oxidation (고압 수증기 내에서 산화막 형성에 관한 연구)

  • 박경희;안순의;구경완;왕진석
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.735-738
    • /
    • 2000
  • This paper shows experimentally that oxide layer on the p-type Si-substrate can grow at low temperature(500$^{\circ}C$∼600$^{\circ}C$) using high pressure water vapor system. As the result of experiment, oxide layer growth rate is about 0.19${\AA}$/min at 500$^{\circ}C$, 0.43${\AA}$/min at 550$^{\circ}C$, 1.2${\AA}$/min at 600$^{\circ}C$ respectively. So, we know oxide layer growth follows reaction-controlled mechanism in given temperature range. Consequently, granting that oxide layer growth rate increases linearly to temperature over 600$^{\circ}C$, we can expect oxide growth rate is 5.2${\AA}$/min at 1000$^{\circ}C$. High pressure oxidation of silicon is particularly attractive for the thick oxidation of power MOSFET, because thermal oxide layers can grow at relatively low temperature in run times comparable to typical high-temperature, 1 atm conditions. For higher-temperature, high-pressure oxidation, the oxidation time is reduced significantly

  • PDF

The Chemically Induced Hot Electron Flows on Metal-Semiconductor Schottky nanodiodes During Hydrogen Oxidation

  • Lee, Hyosun;Lee, Youngkeun;Lee, Changhwan;Kim, Sunmi;Park, Jeong Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.152-152
    • /
    • 2013
  • Mechanism of energy conversion from chemical to electrical during exothermic catalytic reactions at the metal surfaces has been a fascinating and crucial subject in heterogeneous catalysis. A metal-semiconductor Schottky nanodiode is novel device for direct detection of chemically induced hot electrons which have sufficient energy to surmount the Schottky barrier. We measured a continuous chemicurrent during the hydrogen oxidation under of 760 Torr of O2 and 6 Torr of H2 by using Pt/Si and Pt/TiO2 nanodiodes at reaction temperatures and compared the chemicurrent with the reaction turnover rate. The thermoelectric current was measured by carrying out an experiment under O2 condition for elimination of the background current. Gas chromatograph and source meter were used for measurement of the chemical turnover rate and the chemicurrent, respectively. The correlation between the chemicurrent and the chemical turnover rate under hydrogen oxidation implies how hot electrons generated on the metal surface affect hydrogen oxidation.

  • PDF

Effects of amino acids on ethanol metabolism and oxidative stress in the ethanol-perfused rat liver

  • Park, Yeong-Chul;Oh, Se-In;Lee, Mee-Sook;Park, Sang-Chul
    • Environmental Mutagens and Carcinogens
    • /
    • v.16 no.1
    • /
    • pp.13-18
    • /
    • 1996
  • One mechanism of free-radical production by ethanol is suggested to be through the intracellular conversion of XDH to XO by increased ratio of NADH to NAD. The major mechanism for physiological compensation of cytosolic NADH/NAD balance is the malate/aspartate shutfie. Therefore, it is important to develop the method to improve the efficiency of malate/aspartate shuttle in ethanol metabolism. In the present study, various amino acids and organic acid involved in the shuttle were tested for their functional efficiency in modulating shuttle in the ethanol-perfused rat liver. The rate of ethanol oxidation in the liver perfused with aspartate alone or aspartate in combination with pyruvate, respectively, was increased by about 10% compared to control liver, but not in the tissues perfused with glummate, cysteine or pyruvate alone. Though glummate, cysteine and pyravate did not affect the ethanol oxidation significanfiy, they showed some suppresive effect on the ethanol-induced radical generation monitored by protein carbonylation analysis. Among the tested components, aspartate is confirmed to be the most efficient as a metabolic regulator for both ethanol oxidation and ethanol-induced oxidative stress in our perfusion system. These effects of aspartate would result from NAD recycling by its supplementation through the coupled aspartate aminotransferase/malate dehydrogenase reactions and the malate-aspartate shuttle.

  • PDF

High Temperature Oxidation Behavior of Ni based Porous Metal (Ni계 다공체 금속의 고온 산화 거동)

  • Choi, Sung-Hwan;Yun, Jung-Yeul;Lee, Hye-Mun;Kong, Young-Min;Kim, Byoung-Kee;Lee, Kee-Ahn
    • Journal of Powder Materials
    • /
    • v.18 no.2
    • /
    • pp.122-128
    • /
    • 2011
  • This study investigated the high temperature oxidation behavior of Ni-22.4%Fe-22%Cr-6%Al (wt.%) porous metal. Two types of open porous metals with different pore sizes of 30 PPI and 40 PPI (pore per inch) were used. A 24-hour TGA test was conducted at three different temperatures of $900^{\circ}C$, $1000^{\circ}C$ and $1100^{\circ}C$. The results of the BET analysis revealed that the specific surface area increased as the pore size decreased from 30 PPI to 40 PPI. The oxidation resistance of porous metal decreased with decreasing pore size. As the temperature increased, the oxidation weight gain of the porous metal also increased. Porous metals mainly created oxides such as $Al_2O_3$, $Cr_2O_3$, $NiAl_2O_4$, and $NiCr_2O_4$. In the 40 PPI porous metal with small pore size and larger specific surface area, the depletion of stabilizing elements such as Al and Cr occurred more quickly during oxidation compared to the 30 PPI porous metal. Ni-Fe-Cr-Al porous metal's high-temperature oxidation micro-mechanism was also discussed.

Redox Property of Transition Metal Oxides in Catalytic Oxidation (TPR/TPO 실험기법을 이용한 전이금속산화물의 산화-환원 특성 연구)

  • Kim, Young-Ho;Lee, Ho-In
    • Applied Chemistry for Engineering
    • /
    • v.10 no.8
    • /
    • pp.1161-1168
    • /
    • 1999
  • The redox property of oxide materials of the 3rd period transition metals(Cr~Zn), V, Mo, and W was studied with temperature-programmed reduction/temperature-programmed oxidation(TPR/TPO) experiment. The peak temperatures of TPO spectra were equal to or lower than those of TPR spectra. And the peak shapes of TPO spectra were broader than those of TPR ones. The activation energies of TPR/TPO for the oxides of the 3rd period transition metals showed in the range of 33~149 kJ/mol, while for the oxides of V, Mo, and W, they showed relatively higher values. The change of activation energies of TPR/TPO with various metal oxides showed a similar trend to the change of their metal-oxygen bond strengths. The change of activation energies of o-xylene oxidation for various metal oxides was proportional to the difference (${\Delta}E_a$) between the activation energy of TPR and that of TPO. From these results, we concluded that the oxidation of o-xylene over various metal oxide catalysts follows the Mars-van Krevelen mechanism including the surface reduction-oxidation of the metal oxide itself.

  • PDF