• Title/Summary/Keyword: Overshoot voltage

Search Result 119, Processing Time 0.02 seconds

Two Modified Z-Source Inverter Topologies - Solutions to Start-Up Dc-Link Voltage Overshoot and Source Current Ripple

  • Bharatkumar, Dave Heema;Singh, Dheerendra;Bansal, Hari Om
    • Journal of Power Electronics
    • /
    • v.19 no.6
    • /
    • pp.1351-1365
    • /
    • 2019
  • This paper proposes two modified Z-source inverter topologies, namely an embedded L-Z-source inverter (EL-ZSI) and a coupled inductor L-Z source inverter (CL-ZSI). The proposed topologies offer a high voltage gain with a reduced passive component count and reduction in source current ripple when compared to conventional ZSI topologies. Additionally, they prevent overshoot in the dc-link voltage by suppressing heavy inrush currents. This feature reduces the transition time to reach the peak value of the dc-link voltage, and reduces the risk of component failure and overrating due to the inrush current. EL-ZSI and CL-ZSI possess all of the inherent advantages of the conventional L-ZSI topology while eliminating its drawbacks. To verify the effectiveness of the proposed topologies, MATLAB/Simulink models and scaled down laboratory prototypes were constructed. Experiments were performed at a low shoot through duty ratio of 0.1 and a modulation index as high as 0.9 to obtain a peak dc-link voltage of 53 V. This paper demonstrates the superiority of the proposed topologies over conventional ZSI topologies through a detailed comparative analysis. Moreover, experimental results verify that the proposed topologies would be advantageous for renewable energy source applications since they provide voltage gain enhancement, inrush current, dc-link voltage overshoot suppression and a reduction of the peak to peak source current ripple.

Reducing Overshoot Voltage of SiC MOSFET in Grid-Connected Hybrid Active NPC Inverters (계통 연계형 Hybrid Active NPC 인버터의 SiC MOSFET 오버슈트 전압 저감)

  • Lee, Deog-Ho;Kim, Ye-Ji;Kim, Seok-Min;Lee, Kyo-Beum
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.6
    • /
    • pp.459-462
    • /
    • 2019
  • This work presents methods for reducing overshoot voltages across the drain-source of silicon carbide (SiC) MOSFETs in grid-connected hybrid active neutral-point-clamped (ANPC) inverters. Compared with 3-level NPC-type inverter, the hybrid ANPC inverter can realize the high efficiency. However, SiC MOSFETs conduct its switching operation at high frequencies, which cause high overshoot voltages in such devices. These overshoot voltages should be reduced because they may damage switching devices and result in electromagnetic interference (EMI). Two major strategies are used to reduce the overshoot voltages, namely, adjusting the gate resistor and using a snubber capacitor. In this paper, advantages and disadvantages of these methods will be discussed. The effectiveness of these strategies is verified by experimental results.

LDO Regulator with Improved Transient Response Characteristics and Feedback Voltage Detection Structure (Feedback Voltage Detection 구조 및 향상된 과도응답 특성을 갖는 LDO regulator)

  • Jung, Jun-Mo
    • Journal of IKEEE
    • /
    • v.26 no.2
    • /
    • pp.313-318
    • /
    • 2022
  • The feedback voltage detection structure is proposed to alleviate overshoot and undershoot caused by the removal of the existing external output capacitor. Conventional LDO regulators suffer from overshoot and undershoot caused by imbalances in the power supply voltage. Therefore, the proposed LDO is designed to have a more improved transient response to form a new control path while maintaining only the feedback path of the conventional LDO regulator. A new control path detects overshoot and undershoot events in the output stage. Accordingly, the operation speed of the pass element is improved by charging and discharging the current of the gate node of the pass element. LDO regulators with feedback voltage sensing architecture operate over an input voltage range of 3.3V to 4.5V and have a load current of up to 200mA at an output voltage of 3V. According to the simulation result, when the load current is 200mA, it is 73mV under the undershoot condition and 61mV under the overshoot condition.

An Imrpoved Gate Control Scheme for Overvoltage Clamping under IGBT Series Connection (IGBT 직렬 연결시 과전압 제한을 위한 게이트 구동기법)

  • Kim, Wan-Jong;Choe, Chang-Ho;Hyeon, Dong-Seok
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.2
    • /
    • pp.83-88
    • /
    • 1999
  • Series connection of power semiconductor devices is selected in high voltage and high power applications. It is important to prevent the overvoltage from being induced across a device above ratings by the proper voltage balancing in the field of IGBT series connection. In addition, the overvoltage induced by a stray inductance has to be limited in the high power circuit. This paper proposes a new gate control scheme which can balance the voltage properly and limit the overshoot by controlling the slope of collector voltage under the turn-off transient in the series connected IGBTs. The proposed gate control scheme changes the slope of collector voltage by sensing the collector voltage and controlling the gate signal actively. The new series connected IGBT gate driver is made and its validity is verified by the experimental results for series connected IGBT circuit.

  • PDF

Initial Firing Angle Control of Parallel Multi-Pulse Thyristor Dual Converter for Urban Railway Power Substations

  • Kim, Sung-An;Han, Sung-Wo;Cho, Yun-Hyun
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.674-682
    • /
    • 2017
  • This paper presents an optimal initial firing angle control based on the energy consumption and regenerative energy of a parallel multi-pulse thyristor dual converter for urban railway power substations. To prevent short circuiting the thyristor dual converter, a hysteresis band for maintaining a zero-current discontinuous section (ZCDS) is essential during mode changes. During conversion from the ZCDS to forward or reverse mode, the DC trolley voltage can be stabilized by selecting the optimal initial firing angle without an overshoot and slow response. However, the optimal initial firing angle is different depending on the line impedance of each converter. Therefore, the control algorithm for tracking the optimal initial firing angle is proposed to eliminate the overshoot and slow response of DC trolley voltage. Simulations and experiments show that the proposed algorithm yields the fastest DC voltage control performance in the transient state by tracking the optimal firing angle.

Design of DC-DC Boost Converter with RF Noise Immunity for OLED Displays

  • Kim, Tae-Un;Kim, Hak-Yun;Baek, Donkyu;Choi, Ho-Yong
    • Journal of Semiconductor Engineering
    • /
    • v.3 no.1
    • /
    • pp.154-160
    • /
    • 2022
  • In this paper, we design a DC-DC boost converter with RF noise immunity to supply a stable positive output voltage for OLED displays. For RF noise immunity, an input voltage variation reduction circuit (IVVRC) is adopted to ensure display quality by reducing the undershoot and overshoot of output voltage. The boost converter for a positive voltage Vpos operates in the SPWM-PWM dual mode and has a dead-time controller using a dead-time detector, resulting in increased power efficiency. A chip was fabricated using a 0.18 um BCDMOS process. Measurement results show that power efficiency is 30% ~ 76% for load current range from 1 mA to 100 mA. The boost converter with the IVVRC has an overshoot of 6 mV and undershoot of 4 mV compared to a boost converter without that circuit with 18 mV and 20 mV, respectively.

High-Power-Factor Boost Rectifier with a Passive Lossless Snubber (무손실 수동스너버를 갖는 고역율 부스트 정류기)

  • 김만고
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.5
    • /
    • pp.617-625
    • /
    • 1998
  • A passive energy recovery snubber for high-power-factor boost rectifier, in which the main switch is implemented with a MOSFET, is described in terms of the equivalent circuits that are operational during turn-on and turn-off sequences. These equivalent circuits are analyzed so that the overshoot voltage across the main switch, the snubber current, and the turn-off transition time can be predicted analytically. From these results, the normalized overshoot voltage is reduced to 1 as $_W2T_on$ varies from zero to $\pi$/2, and then it is fIxed at 1 for $_W2T_on$> $\pi$/2. The peak snubber inductor current is directly proportional to the input current. The turn-offtransition time wltoffvaries from 0 to 2.57, depending on $_W2T_on$. The main switch combined with proposed snubber can be turned on with zero current and turned off at limited voltage stress. The high-power-factor boost rectifier with proposed snubber is implemented, and the experimental results are presented to confirm the validity of proposed snubber.

  • PDF

An Improved Turn-Off Gate Control Scheme for Series Connected IGBTs (IGBT 직렬 연결을 위한 턴-오프 게이트 구동기법)

  • 김완중;최창호;현동석
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.4 no.1
    • /
    • pp.99-104
    • /
    • 1999
  • The large scale industry needs high voltage converters. Therefore series connection of power semiconductor devices is necessary. It is important to prevent the overvoltage from being induced across a device above ratings by the proper voltage balancing in the field of IGBT series connection. In addition, the overvoltage induced by a stray inductance has to be limited in the high power circuit. This paper proposes a new gate control scheme which can balance the voltage properly and limit the overshoot by controlling the slope of collector voltage under the turn-off transient in the series connected IGBTs. The proposed gate control scheme which senses the collector voltage and controls the gate signal actively limits the overvoltage. The new series connected IGBT gate driver is made and its validity is verified by the experimental results in the series connected IGBT circuit.

Transient Response Improvement at Startup of Three Phase AC/DC Converter for DC Distribution System in Building Applications (빌딩용 직류배전 시스템의 3상 AC/DC 컨버터의 기동 시 과도상태 응답 개선)

  • Shin, Soo-Cheol;Lee, Hee-Jun;Lee, Jung-Hyo;Na, Jong-Kuk;Won, Chung-Yuen
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.2
    • /
    • pp.138-144
    • /
    • 2013
  • Most of the DC loads have had the sensitive characteristics electrically for input voltage. In this system, power converter is operated after connecting with DC loads to minimize the overshoot of the control voltage that may occur during connection of the loads. But whenever starting the power converter, parameters in circuit are different because power converter has been connected with diverse load types at each startup time. This is cause of a disadvantage to PI controller design of power converter. In this paper, the novel voltage control method using sliding mode control theory has proposed. This control method minimizes the overshoot of control voltage at startup of power converter. Despite the variations of the system parameters, the proposed voltage controller has fast response and robustness characteristics such as PI and sliding mode controllers. The proposed controller was applied to the three-phase AC/DC converter and each performance of controller was verified.

IP Voltage Controller of Three-phase PWM Converter for Power Supply of Communication System (IP 제어기를 이용한 통신 전원용 3상 PWM 컨버터의 전압 제어)

  • Shin, Hee-Keun;Kim, Hag-Wone;Cho, Kwan-Yuhl;Ji, Jun-Keun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.6
    • /
    • pp.2722-2728
    • /
    • 2011
  • 3Phase PWM rectifier has become increasingly popular due to its capability of nearly sinusoidal waveform of the input current, and nearly unity power factor operation as a AC/DC rectifier of high capacity telecommunication power supply system. Generally, PI controller is used as a voltage controller of PWM rectifier and voltage controller must be designed to have low overshoot in transient state to get a reliability and stable operation. However, in the application of telecommunication in which load condition is varied very fast, the voltage controller must have a large bandwidth to reduce output voltage variation. The PI controller with large bandwidth arouse the excessive overshoot of the output voltage, and this large output voltage variation degrades the reliability of communication power of the three-phase PWM Rectifier. In this paper, new IP voltage controller for 3 phase PWM rectifier is proposed which has relatively low transient output voltage variation. The improved output characteristics of the transient state voltage responses of the starting and at load changes of the proposed voltage controller are proved by simulations and experiments.