This study proposes a novel low-complexity algorithm for computing inverse fast Fourier transform (IFFT)/fast Fourier transform (FFT) operations in binary phase shift keying-modulated orthogonal frequency division multiplexing (OFDM) communication systems without requiring any twiddle factor multiplications. The peak-to-average power ratio (PAPR) reduction capacity of an efficient PAPR reduction technique, that is, H-SLM method, is evaluated using the proposed IFFT algorithm without any complex multiplications, and the impact of oversampling factor for the accurate calculation of PAPR is analyzed. The power spectral density of an OFDM signal generated using the proposed multiplierless IFFT algorithm is also examined. Moreover, the bit-error-rate performance of the H-SLM technique with the proposed IFFT/FFT algorithm is compared with the classical methods. Simulation results show that the proposed IFFT/FFT algorithm used in the H-SLM method requires no complex multiplications, thereby minimizing power consumption as well as the area of IFFT/FFT processors used in OFDM communication systems.
Journal of the Korea Society of Computer and Information
/
v.19
no.9
/
pp.125-139
/
2014
In this paper, I propose a response modeling with a Semi-Supervised Support Vector Regression (SS-SVR) algorithm. In order to increase the accuracy and profit of response modeling, unlabeled data in the customer dataset are used with the labeled data during training. The proposed SS-SVR algorithm is designed to be a batch learning to reduce the training complexity. The label distributions of unlabeled data are estimated in order to consider the uncertainty of labeling. Then, multiple training data are generated from the unlabeled data and their estimated label distributions with oversampling to construct the training dataset with the labeled data. Finally, a data selection algorithm, Expected Margin based Pattern Selection (EMPS), is employed to reduce the training complexity. The experimental results conducted on a real-world marketing dataset showed that the proposed response modeling method trained efficiently, and improved the accuracy and the expected profit.
Because SCADA monitoring data of wind turbines are large and fast changing, the unbalanced proportion of data in various working conditions makes it difficult to process fault feature data. The existing methods mainly introduce new and non-repeating instances by interpolating adjacent minority samples. In order to overcome the shortcomings of these methods which does not consider boundary conditions in balancing data, an improved over-sampling balancing algorithm SC-SMOTE (safe circle synthetic minority oversampling technology) is proposed to optimize data sets. Then, for the balanced data sets, a fault diagnosis method based on improved k-nearest neighbors (kNN) classification for wind turbine blade icing is adopted. Compared with the SMOTE algorithm, the experimental results show that the method is effective in the diagnosis of fan blade icing fault and improves the accuracy of diagnosis.
Blind equalization of transmission channel is important in communication areas and signal processing applications because it does not need training sequence, nor does it require a priori channel information. Recently, Tong et al. proposed solutions for this problem exploit the diversity induced by antenna array or time oversampling, leading to the second order statistics techniques, fur example, subspace method, prediction error method, and so on. The linear prediction error method is perhaps the most attractive in practice due to the insensitive to blind equalizer length mismatch as well as for its simple adaptive filter implementation. Unfortunately, the previous one-step prediction error method is known to be limited in arbitrary delay. In this paper, we induce the optimal delay, and propose the adaptive blind equalizer with multi-step linear prediction using RLS-type algorithm. Simulation results are presented to demonstrate the proposed algorithm and to compare it with existing algorithms.
The Journal of Korean Institute of Electromagnetic Engineering and Science
/
v.21
no.7
/
pp.715-725
/
2010
Orthgonal Frequency Division Multiplexing(OFDM) system is effective for the high data rate transmission in the frequency selective fading channel. In this paper we propose PAPR(Peak to Average Power Ratio) reduction method of problem in OFDM system used Fuzzy theory that often control machine. This thesis proposes PAPR reducing method of OFDM system using Fuzzy theory. The advantages for using Fuzzy theory to reduce PAPR are that it is easy to manage the data and embody the hardware, and required smaller amount of operation. Firstly, we proposed simple algorithm that is reconstructed at receiver with transmitted overall PAPR which is reduced PAPR of sub-block using Fuzzy. Although there are some drawbacks that the operation of the system is increased comparing conventional OFDM system and it is needed to send the information about Fuzzy indivisually, it is assured that the performance of the system is enhanced for PAPR reducing. To evaluate the perfomance, the proposed search algorithm is compared with the proposed algorithm in terms of the complementary cumulative distribution function(CCDF) of the PAPR and the computational complexity. As a result of using the QPSK and 16QAM modulation, Fuzzy theory method is more an effective method of reducing 2.3 dB and 3.1 dB PAPR than exiting OFDM system when FFT size(N)=512, and oversampling=4 in the base PR of $10^{-5}$.
Blind channel estimation of communication channels is a problem of important current theoretical concerns. Recently proposed solutions for this problem exploit the diversity induced by antenna array or time oversampling, leading to the so-called, second order statistics techniques. This paper proposes the blind adaptive channel estimation using multichannel linear prediction method. Computer simulations are presented to compare the proposed algorithm with the existing ones.
Blind adaptive channel identification of communication channels is a problem of important current theoretical and practical concerns. Recently proposed solutions for this problem exploit the diversity induced by antenna array or time oversampling leading to the so-called, second order statistics techniques. And adaptive blind channel identification techniques based on a off-line least-squares approach have been proposed. In this paper, a new approach is proposed that is based on eigenvalue decomposition. And the eigenvector corresponding to the minimum eigenvalue of the covariance matrix of the received signals contains the channel impulse response. And we present a adaptive algorithm to solve this problem. The performance of the proposed technique is evaluated over real measured channel and is compared to existing algorithms.
Due to the nature of the conjunctive Cone Penetration Test(CPT), which does not verify the actual sample directly, geotechnical engineers commonly classify the underground geomaterials using CPT results with the classification diagrams proposed by various researchers. However, such classification diagrams may fail to reflect local geotechnical characteristics, potentially resulting in misclassification that does not align with the actual stratification in regions with strong local features. To address this, this paper presents an objective method for more accurate local CPT soil classification criteria, which utilizes C4.5 decision tree models trained with the CPT results from the clay-dominant southern coast of Korea and the sand-dominant region in South Carolina, USA. The results and analyses demonstrate that the C4.5 algorithm, in conjunction with oversampling, outlier removal, and pruning methods, can enhance and optimize the decision tree-based CPT soil classification model.
Objective : The purpose of this study is to explore the most suitable machine learning model algorithm for Shanghanlun diagnostic system classification using natural language processing (NLP). Methods : A total of 201 data items were collected from 『Shanghanlun』 and 『Clinical Shanghanlun』, 'Taeyangbyeong-gyeolhyung' and 'Eumyangyeokchahunobokbyeong' were excluded to prevent oversampling or undersampling. Data were pretreated using a twitter Korean tokenizer and trained by logistic regression, ridge regression, lasso regression, naive bayes classifier, decision tree, and random forest algorithms. The accuracy of the models were compared. Results : As a result of machine learning, ridge regression and naive Bayes classifier showed an accuracy of 0.843, logistic regression and random forest showed an accuracy of 0.804, and decision tree showed an accuracy of 0.745, while lasso regression showed an accuracy of 0.608. Conclusions : Ridge regression and naive Bayes classifier are suitable NLP machine learning models for the Shanghanlun diagnostic system classification.
Journal of the Korea Institute of Information and Communication Engineering
/
v.18
no.4
/
pp.790-796
/
2014
Identification of communication channels is a problem of important current theoretical and practical concerns. Recently proposed solutions for this problem exploit the diversity induced by antenna array or time oversampling. The method resorts to an adaptive filter with a linear constraint. In this paper, an approach is proposed that is based on decomposition. Indeed, the eigenvector corresponding to the minimum eigenvalue of the covariance matrix of the received signals contains the channel impulse response. And we present an adaptive algorithm to solve this problem. Proposed technique shows the better performance than one of existing algorithms.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.