• Title/Summary/Keyword: Overpotential deposition

Search Result 13, Processing Time 0.02 seconds

A Review on the Deposition/Dissolution of Lithium Metal Anodes through Analyzing Overpotential Behaviors (과전압 거동 분석을 통한 리튬 금속 음극의 전착/탈리 현상 이해)

  • Han, Jiwon;Jin, Dahee;Kim, Suhwan;Lee, Yong Min
    • Journal of the Korean Electrochemical Society
    • /
    • v.25 no.1
    • /
    • pp.1-12
    • /
    • 2022
  • Lithium metal is the most promising anode for next-generation lithium-ion batteries due to its lowest reduction potential (-3.04 V vs. SHE) and high specific capacity (3860 mAh/g). However, the dendritic formation under high charging current density remains one of main technical barriers to be used for commercial rechargeable batteries. To address these issues, tremendous research to suppress lithium dendrite formation have been conducted through new electrolyte formulation, robust protection layer, shape-controlled lithium metal, separator modification, etc. However, Li/Li symmetric cell test is always a starting or essential step to demonstrate better lithium dendrite formation behavior with lower overpotential and longer cycle life without careful analysis. Thus, this review summarizes overpotential behaviors of Li/Li symmetric cells along with theoretical explanations like initial peaking or later arcing. Also, we categorize various overpotential data depending on research approaches and discuss them based on peaking and arcing behaviors. Thus, this review will be very helpful for researchers in lithium metal to analyze their overpotential behaviors.

Fundamentals of Underpotential Deposition : Importance of Underpotential Deposition in Interfacial Electrochemistry

  • Lee Jong-Won;Pyun Su-Il
    • Journal of the Korean Electrochemical Society
    • /
    • v.4 no.4
    • /
    • pp.176-181
    • /
    • 2001
  • This article covers the fundamentals of underpotential deposition (UPD), focussing on the importance of UPD in interfacial electrochemistry. Firstly, this article described the basic concepts of UPD, including underpotential shift and electrosorption valency. Secondly, the present article explained UPD of hydrogen, followed by hydrogen evolution or hydrogen absorption, giving special attention to the adsorption sites of hydrogen on metal surface and the absorption mechanism into Pd. Finally, this article briefly presented the important factors associated with UPD in various fields of interfacial electrochemistry from practical viewpoints.

Charge/discharge Capacity of Natural Graphite Anode According to the Charge/discharge Rate in Lithium Secondary Batteries (리튬 이차전지의 음극재료인 천연흑연의 충방전 속도에 따른 충방전 용량)

  • Ryu Ji Heon;Oh Eun Young;Oh Seung M.
    • Journal of the Korean Electrochemical Society
    • /
    • v.7 no.1
    • /
    • pp.32-37
    • /
    • 2004
  • The charge/discharge capacity of natural graphite anode in lithium secondary batteries was examined as a function of charge/discharge rate. When the natural graphite anode was galvanostatically cycled in the range of 0.0-2.0V $(vs.\;Li/Li^+)$, the charging capacity decreased with an increase in the charging rate, which is caused by an earlier approach to the charging cut-off (0.0 V) before the complete charging that is in turn caused by an ever-increasing overpotential at higher rates. Even if the overpotential of discharging reaction also increased at higher discharge rates, the discharging reaction took place in the range of 0.0-0.3 V that is far below the discharge cut-off (2.0 V). As a result, the discharge capacity was not affected by the discharge rate because all the lithium ions once intercalated are fully discharged even at high current condition. As the overpotential of lithium deposition reaction also increased at high current condition, the charge capacity of natural graphite could be enlarged by lowering the charging cut-off voltage below 0.0 V, There is, however, a limitation for the lowering of cut-off voltage because the resistance for lithium deposition is smaller than that of lithium intercalation into graphite. When the charge cut-off voltage was lowered down to -0.04 V under IC condition, lithium ions were inserted into graphite without lithium deposition such that the discharge capacity could be raised up to $11\%$.

Effects of Surface Treatment of Cathode Materials on the Electrodeposition Behavior of Fe-Ni Alloy (표면처리와 전극 재료가 철-니켈 합금 도금에 미치는 영향)

  • Kang, Na Young;Lee, Jae Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.29 no.4
    • /
    • pp.71-75
    • /
    • 2022
  • In this research, Fe-Ni alloy films were electrodeposited on stainless steel (SS304 and SS430) and Ti plates to investigate the effects of surface conditions of cathode on deposits. The Ti plates were electropolished in 3 M H2SO4-methanol electrolytes at various conditions before electrodeposition, and unpolished Ti and the optimized specimen, polished at 10 V for 8 min, were used as cathode. The anomalous codeposition, the phenomenon which more active Fe is reduced preferentially, occurred on all substrate, however, there were differences in composition of all deposits. As the results of potential monitoring during electrodeposition, it was confirmed that the larger overpotential was applied to the deposition cell when using Ti cathode, leading to high Fe content of deposits from unpolished Ti due to increase in nucleation of Fe. Also, it was founded that the polished Ti can reduced deposition overpotential.

The effect of the Ultrasound in recovery of Cu by the Electrochemical deposition (초음파가 전착반응에 의한 구리의 회수에 미치는 영향)

  • 이재동;윤용수;홍인권;정일현
    • Journal of the Korean Society of Safety
    • /
    • v.8 no.3
    • /
    • pp.56-63
    • /
    • 1993
  • In this study the ultrasound which has the properties of mixing, surface cleaning effect, increasing of the effective reaction surface area and increasing of the effective collision frequency, was used to enhance the recovering efficiency of Cu from the Cu-ion containning waste water. The ultrasonic reactor used in this study was dsigned and constructed for improving the disadvantage of the existing ultrasonic reactor From the experimental result and its analysis. we obtained following conclusions. 1. The ultrasound increased the rate of electrochemical deposition to 582.2% in maximum at the Condition of 0.1M-CuSO$_4$and 2.1V-overpotential. 2. This study gave the possibility of the scale-up of ultrasonic reactor and In particular, ultrasonic reactor would be effective in treatment of waste water contains a low concentration of Cu ion.

  • PDF

Relation between Magnetic Properties and Surface Morphology of Co-Base Alloy Film by Electrodeposition Method (전착법을 이용한 Co계 합금박막의 표면형태와 자기특성과의 관계)

  • Han, Chang-Suk;Kim, Sang-Wook
    • Korean Journal of Materials Research
    • /
    • v.27 no.11
    • /
    • pp.624-630
    • /
    • 2017
  • In this study, we investigated the overpotential of precipitation related to the catalytic activity of electrodes on the initial process of electrodeposition of Co and Co-Ni alloys on polycrystalline Cu substrates. In the case of Co electrodeposition, the surface morphology and the magnetic property change depending on the film thickness, and the relationship with the electrode potential fluctuation was shown. Initially, the deposition potential(-170 mV) of the Cu electrode as a substrate was shown, the electrode potential($E_{dep}$) at the $T_{on}$ of electrodeposition and the deposition potential(-600 mV) of the surface of the electrodeposited Co film after $T_{off}$ and when the pulse current was completed were shown. No significant change in the electrode potential value was observed when the pulse current was energized. However, in a range of number of pulses up to 5, there was a small fluctuation in the values of $E_{dep}$ and $E_{imm}$. In addition, in the Co-Ni alloy electrodeposition, the deposition potential(-280 mV) of the Cu electrode as the substrate exhibited the deposition potential(-615 mV) of the electrodeposited Co-Ni alloy after pulsed current application, the $E_{dep}$ of electrodeposition at the $T_{on}$ of each pulse and the $E_{imm}$ at the $T_{off}$ varied greatly each time the pulse current was applied. From 20 % to less than 90 % of the Co content of the thin film was continuously changed, and the value was constant at a pulse number of 100 or more. In any case, it was found that the shape of the substrate had a great influence.

Effect of Electrolyte Type on Shape and Surface Area Characteristics of Dendritic Cu Powder (도금전해액의 종류에 따른 수지상 구리 분말의 형상 및 표면적 특성)

  • Park, Da Jung;Park, Chae-Min;Kang, Nam Hyun;Lee, Kyu Hwan
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.5
    • /
    • pp.416-422
    • /
    • 2016
  • We have investigated the effects of applied potential, deposition time and electrolyte types on shapes and physical properties of Cu dendrites by potentiostatic electrodeposition. Finer shape of dendrites was observed at less cathodic potential by 100mV than at the limiting current, due to 'effective overpotential'. The shape of copper dendrite is related to the deposition time, too. The dendrite depositing for 10 min showed the finest shape. The finer dendrite has the less apparent density and the larger specific surface area. Dendrite from chloride solution has the lowest density and the largest surface area among three plating solutions, sulfate, chloride and pyrophosphate.

Metal Deposit Distribution in Barrel Plating of Partially Conductive Load

  • 이완구
    • Journal of the Korean Professional Engineers Association
    • /
    • v.16 no.3
    • /
    • pp.68-73
    • /
    • 1983
  • The metal deposition behavior in the barrel tin plating has been studied for the electronic DIP products, and tried to find out some modified factors in order to explain partial ,current flow behavior of this load. The deposition distribution characteristics for DTP products should be classified with the normal barrel plating as partially conductive load. Deposit distribution curves obtained from one-dimensional model have shown strong dependence n the applied current density, rotating speed of barrel and metal ion concentration of the solution. Theoretical formula J=$\delta$'/${\beta}$-{-c$^3$/${\gamma}$-exp-(1-${\alpha}$)n${\Phi}$} derived from one-dimensional porous model has been proposed for the barrel plating behavior where higher overpotential and concentration changes take place during barrel plating.

  • PDF

Bamboo-like Te Nanotubes with Tailored Dimensions Synthesized from Segmental NiFe Nanowires as Sacrificial Templates

  • Suh, Hoyoung;Jung, Hyun Sung;Myung, Nosang V.;Hong, Kimin
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.11
    • /
    • pp.3227-3231
    • /
    • 2014
  • Bamboo-like Te nanotubes were synthesized via the galvanic displacement reaction of NiFe nanowires with Ni-rich and Fe-rich segments. The thick and thin components of the synthesized Te nanotubes were converted from the Ni-rich and Fe-rich segments in the NiFe nanowires respectively. The dimensions of the Te nanotubes were controlled by employing sacrificial NiFe nanowires with tailored dimensions as the template for the galvanic displacement reaction. The segment lengths of the Te nanotubes were found to be dependent on those of the sacrificial NiFe nanowires. The galvanic displacement reaction was characterized by analyzing the open circuit potential and the corrosion resistance.

The Enhancement Effect of the Electrochemical Deposition in the Recovering Process of Cu from CuSO4 Solution (황산구리 용액으로부터의 구리회수공정에서 초음파에 의한 전착반응의 증대효과)

  • Yoon, Yong-Soo;Hong, In-Kwon;Lee, Jae-Dong;Jeong, Il-Hyun
    • Applied Chemistry for Engineering
    • /
    • v.5 no.2
    • /
    • pp.199-208
    • /
    • 1994
  • In this study, the ultrasound which provides the properties of mixing, and surface cleaning effect, the increase of the effective reaction surface area and the enhancement of the effective collision frequency, was used to enhance the recovering efficiency of Cu from the Cu-ion containning waste water. The ultrasonic reactor used in this study was designed and constructed for improving the disadvantage of the existing ultrasonic reactor. From the experimental result and its analysis, we obtained following conclusions. 1. The ultrasound increased the rate of electrochemical deposition to 582.2% in maximum at the condition of $0.1M-CuSO_4$, and 2.1 V-overpotential. 2. The enhancement effect of ultrasound induced by the reduction of diffusion layer thickness was 277.8% in maximum and induced by the other effect except for the reduction effect of the diffusion layer thickness was 253.6% in maximum at $0.1M-CuSO_4$ and 2.1V overpotential. 3. This study gave the possibility of the scale-up of ultrasonic reactor and in particular, ultrasonic reactor would be effective in the treatment of waste water containning a low concentration of Cu ion.

  • PDF