DOI QR코드

DOI QR Code

Effect of Electrolyte Type on Shape and Surface Area Characteristics of Dendritic Cu Powder

도금전해액의 종류에 따른 수지상 구리 분말의 형상 및 표면적 특성

  • Park, Da Jung (Surface Technology Division, Korea Institute of Materials Science (KIMS)) ;
  • Park, Chae-Min (Department of Materials Science and Engineering, Dong-A University) ;
  • Kang, Nam Hyun (Department of Materials Science and Engineering, Pusan National University) ;
  • Lee, Kyu Hwan (Surface Technology Division, Korea Institute of Materials Science (KIMS))
  • 박다정 (재료연구소 전기화학연구실) ;
  • 박채민 (동아대학교 신소재공학과) ;
  • 강남현 (부산대학교 재료공학과) ;
  • 이규환 (재료연구소 전기화학연구실)
  • Received : 2016.10.12
  • Accepted : 2016.10.27
  • Published : 2016.10.31

Abstract

We have investigated the effects of applied potential, deposition time and electrolyte types on shapes and physical properties of Cu dendrites by potentiostatic electrodeposition. Finer shape of dendrites was observed at less cathodic potential by 100mV than at the limiting current, due to 'effective overpotential'. The shape of copper dendrite is related to the deposition time, too. The dendrite depositing for 10 min showed the finest shape. The finer dendrite has the less apparent density and the larger specific surface area. Dendrite from chloride solution has the lowest density and the largest surface area among three plating solutions, sulfate, chloride and pyrophosphate.

Keywords

References

  1. N. Nikolic, G. Brankovic, M.G. Pavlovic, Correlate between morphology of powder particles obtained by the different regimes of electrolysis and the quantity of evolved hydrogen, Powder technology, 221 (2012) 271-277. https://doi.org/10.1016/j.powtec.2012.01.014
  2. K. Popov, N. Krstajic, M. Cekerevac, The mechanism of formation of coarse and disperse electrodeposits, Modern Aspects of Electrochemistry, 30 (1996) 261-312.
  3. M. Rosso, E. Chassaing, V. Fleury, J.-N. Chazalviel, Shape evolution of metals electrodeposited from binary electrolytes, Journal of Electroanalytical Chemistry, 559 (2003) 165-173. https://doi.org/10.1016/S0022-0728(02)01269-X
  4. V. Fleury, D. Barkey, Branched copper electrodeposition on a substrate, Physica A: Statistical Mechanics and its Applications, 233 (1996) 730-741. https://doi.org/10.1016/S0378-4371(96)00202-6
  5. N. Nikolic, K. Popov, L.J. Pavlovic, M. Pavlovic, Morphologies of copper deposits obtained by the electrodeposition at high overpotentials, Surface and Coatings Technology, 201 (2006) 560-566. https://doi.org/10.1016/j.surfcoat.2005.12.004
  6. L. Hui, Z. Xiaopeng, Metamaterials with dendriticlike structure at infrared frequencies, Applied physics letters, 90 (2007) 191904. https://doi.org/10.1063/1.2737382
  7. Y. Kang, F. Chen, Preparation of Ag-Cu bimetallic dendritic nanostructures and their hydrogen peroxide electroreduction property, Journal of Applied Electrochemistry, 43 (2013) 667-677. https://doi.org/10.1007/s10800-013-0563-0
  8. X. Chen, C.H. Cui, Z. Guo, J.H. Liu, X.J. Huang, S.H. Yu, Unique heterogeneous silver-copper dendrites with a trace amount of uniformly distributed elemental Cu and their enhanced SERS properties, Small, 7 (2011) 858-863. https://doi.org/10.1002/smll.201002331
  9. D. Bilby, D.J. Kubinski, M.M. Maricq, Current amplification in an electrostatic trap by soot dendrite growth and fragmentation: Application to soot sensors, Journal of Aerosol Science, 98 (2016) 41-58. https://doi.org/10.1016/j.jaerosci.2016.03.003
  10. D.-Y. Shin, C. Sim, B.-K. Koo, D.-Y. Park, Effect of Deposition Conditions on Properties of Cu Thin Films Electrodeposited from Pyrophosphate Baths, Journal of the Korean Electrochemical Society, 16 (2013) 19-29. https://doi.org/10.5229/JKES.2013.16.1.19
  11. R. Qiu, H.G. Cha, H.B. Noh, Y.B. Shim, X.L. Zhang, R. Qiao, D. Zhang, Y.l. Kim, U. Pal, Y.S. Kang, Preparation of Dendritic Copper Nanostructures and Their Characterization for Electroreduction, The Journal of Physical Chemistry C, 113 (2009) 15891-15896. https://doi.org/10.1021/jp904222b
  12. E. Abel, O. Redlich, Uber die elektrolytische Herstellung von Kupferoxydul, Zeitschrift fur Elektrochemie und angewandte physikalische Chemie, 34 (1928) 323-326.
  13. T. Hurlen, Electrochemical behavior of copper in acid chloride solution, Acta Chem. Scandinavia, 15 (1961) 12311238. https://doi.org/10.3891/acta.chem.scand.15-1231
  14. T. Kekesi, M. Isshiki, Electrodeposition of copper from pure cupric chloride hydrochloric acid solutions, Journal of applied electrochemistry, 27 (1997) 982-990. https://doi.org/10.1023/A:1018418105908
  15. W. Shao, G. Zangari, Dendritic Growth and Morphology Selection in Copper Electrodeposition from Acidic Sulfate Solutions Containing Chlorides, The Journal of Physical Chemistry C, 113 (2009) 10097-10102.
  16. F. TAKU, M. MASAHIRO, DENDRITIC COPPER POWDER, (2013).
  17. D. -J. Chen, Y. -H. Lu, A. -J. Wang, J. -J. Feng, T. -T. Huo, W. -J. Dong, Facile synthesis of ultra-long Cu microdendrites for the electrochemical detection of glucose, Journal of Solid State Electrochemistry, 16 (2012) 1313-1321. https://doi.org/10.1007/s10008-011-1524-3
  18. A. M. Alfantazi, T. M. Ahmed, D. Tromans, Corrosion behavior of copper alloys in chloride media, Materials & Design, 30 (2009) 2425-2430. https://doi.org/10.1016/j.matdes.2008.10.015
  19. M. Ghandehari, T. Andersen, H. Eyring, The electrochemical reduction of oxygen on copper in dilute sulphuric acid solutions, Corrosion science, 16 (1976) 123-135. https://doi.org/10.1016/0010-938X(76)90053-6
  20. A. Frignani, L. Tommesani, G. Brunoro, C. Monticelli, M. Fogagnolo, Influence of the alkyl chain on the protective effects of 1, 2, 3-benzotriazole towards copper corrosion.: Part I: inhibition of the anodic and cathodic reactions, Corrosion science, 41 (1999) 1205-1215. https://doi.org/10.1016/S0010-938X(98)00191-7
  21. K. Balakrishnan, V. K. Venkatesan, Cathodic reduction of oxygen on copper and brass, Electrochimica Acta, 24 (1979) 131-138. https://doi.org/10.1016/0013-4686(79)80015-8
  22. K. Popov, S. S. Djokic, B. N. Grgur, Fundamental aspects of electrometallurgy, (2002).
  23. N. Nikolic, K. Popov, Hydrogen Co-deposition Effects on the Structure of Electrodeposited Copper, in: S.S. Djokic (Ed.) Electrodeposition: Theory and Practice, Springer New York, New York, NY, 2010, pp. 1-70.
  24. N. Nikolic, K. Popov, L.J. Pavlovic, M. Pavlovic, The effect of hydrogen codeposition on the morphology of copper electrodeposits. I. The concept of effective overpotential, Journal of Electroanalytical Chemistry, 588 (2006) 88-98. https://doi.org/10.1016/j.jelechem.2005.12.006