• Title/Summary/Keyword: Overload criterion

Search Result 11, Processing Time 0.029 seconds

Overload Criterion of Mineral-Oil-immersed Distribution Transformers Rated 100kVA and Less Using the Characteristics of Top-Oil Temperature Rising (최상부 유온 상승 특성을 이용한 100kVA 이하 유입식 배전용 변압기의 과부하 판정 기준)

  • Yun, Sang-Yun;Kim, Jae-Chul;Park, Chang-Ho
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.11
    • /
    • pp.559-567
    • /
    • 2002
  • This paper presents the general recommendations for the overload criterions of mineral-oil-immersed distribution transformers rated 100kVA and less. For this purpose, we analyze the characteristics of top-oil temperature rising for mineral-oil-immersed power distribution transformer rated 100kVA and less, manufactured in Korea, In order to analyze the characteristics of top-oil temperature rising due to the distribution transformer loading, we performed experiments at KERI (Korea Electrical Research Institute) from December 2000 to May 2001. The restraint of ambient temperatures for the experiment results is solved using the results of foreign standards. Finally, we present the overload criterions of distribution transformer for summer and winter season, respectively.

An Experimental Investigation of Limit Loads and Fatigue Properties of Spot Welded Specimens (점용접시편의 극한하중과 피로특성에 관한 실험적 고찰)

  • Lee, Hyeong-Il;Kim, Nam-Ho;Lee, Tae-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.1 s.173
    • /
    • pp.38-51
    • /
    • 2000
  • The study on the mechanical behavior of a spot-welded specimen is largely divided into the quasi-static overload failure analysis and the fatigue failure prediction. The main issue in an overload analysis is to examine the critical loads, thereby providing a generalized overload failure criterion. As the welding spot forms a singular geometry of an external crack type, fatigue failure of spot-welded specimens can be evaluated by means of a fracture parameter. In this study, we first present the limit loads of 4 representative types of single spot-welded specimens in terms of the base metal yield strength and specimen geometries. Recasting the load vs. fatigue life relationships experimentally, obtained here, we then predict the fatigue life of spot-weld specimens with a single parameter denoted the equivalent stress intensity factor. This crack driving parameter is demonstrated to successfully describe the effects of specimen geometry and loading type in a comprehensive manner. The suggested fatigue life formula for a single spot weld can play a key, role in the design and assessment of spot-welded panel structures, in that the fatigue strength of multi-spots is eventually determined by the fatigue strength of each single spot.

Overload Criterion of Mineral-Oil-Immersed Distribution Transformers Rated 100kVA and Less (100kVA 이하 유입식 배전용변압기의 과부하 판정기준 설정)

  • Yun, Sang-Yun;Kim, Jae-Chul;Lee, Young-Suk;Park, Chang-Ho;Shon, Hwa-Young
    • Proceedings of the KIEE Conference
    • /
    • 2001.11b
    • /
    • pp.6-8
    • /
    • 2001
  • This paper covers general recommendations for top-oil temperature rising of mineral-oil-immersed power distribution transformer rated 100kVA and less, manufactured in Korea. In order to analyze the top-oil temperature rising due to the distribution transformer loading we performed experiments for oil-immersed distribution transformer, manufactured in domestic at KERI(Korea Electrical Research Institute) from December 2000 to May 2001. The magnitude of loading were changed, and the top-oil temperatures for each time were measured. Finally, we present the overload criteria of distribution transformer for summer and winter season in domestic. respectively.

  • PDF

Prediction of Dynamic Line Rating Based on Thermal Risk Probability by Time Series Weather Models (시계열 기상모델을 이용한 열적 위험확률 기반 동적 송전용량의 예측)

  • Kim, Dong-Min;Bae, In-Su;Cho, Jong-Man;Chang, Kyung;Kim, Jin-O
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.55 no.7
    • /
    • pp.273-280
    • /
    • 2006
  • This paper suggests the method that forecasts Dynamic Line Rating (DLR). Thermal Overload Risk Probability (TORP) of the next time is forecasted based on the present weather conditions and DLR value by Monte Carlo Simulation (MCS). To model weather elements of transmission line for MCS process, this paper will propose the use of statistical weather models that time series is applied. Also, through the case study, it is confirmed that the forecasted TORP can be utilized as a criterion that decides DLR of next time. In short, proposed method may be used usefully to keep security and reliability of transmission line by forecasting transmission capacity of the next time.

A Study on Discrimination between Short-Circuit and Overload based on the Characteristics of the Fusing Current of an Electrical Wire (전선의 용단전류 특성에 근거한 단락과 과부하 판별에 관한 연구)

  • Shong, Kil-Mok;Roh, Young-Su
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.10
    • /
    • pp.176-180
    • /
    • 2007
  • In the case that an overcurrent flows through in electrical wire due to short-circuit or overload, the wire can be fused, thereby causing an electrical fire. In the present article the characteristics of the fusing current of an electrical wire have been studied to discriminate between short-circuit and overload. In the experiment the fusing time was measured as the currents determined by Preece's equation were supplied to bare wires of various diameter. As the results of experiment, the measured fusing currents well satisfied the Onderdonk's equation. By comparing the measured results and the short current the IEC recommends, it is shown that the variable to determine the short current for a bare copper wire, k is appoximately 300. The fusing current of an electrical wire which becomes a short circuit within 5sec can be expressed as a function of diameter based on the value of k. Consequently, the equation for the fusing current provides a criterion to discriminate between short-circuit and overload.

Development of Power System Health Algorithm (전력계통 건전성 지수 알고리즘 개발)

  • Lim, Jin-Taek;Lee, Sung-Hun;Lee, Yeon-Chan;Choi, Jae-Seok;Choi, Hong-Seok;Joo, Joon-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.10
    • /
    • pp.1328-1336
    • /
    • 2014
  • This paper proposes Power System Health Index(PSHI) newly. The paper describes several kind of power system health indices based on two main categories, which are adequacy and security. In adequacy, four kinds of health indices of Frequency, Voltage, Reserve(Operating Reserve Power and Frequency Regulation Reserve Power) and Overload of lines and transformers are proposed. In security, four kinds of health indices of Voltage(154kV, 345kV and 765kV), Overload of lines and transformers, Power flow constraint among areas and SPS are proposed. All indices are mapped with three domains, which are indicated as Health, Margin and Risk, defined with expert interview. While domains of health, margin and risk is defined similar with the conventional well being analysis of power system. The criterion of the domains is proposed using an interview with expert operators and practical reliability codes in Korea. The several kinds of health index functions, which are linear ratio, piecewise linear ration and reverse ratio function etc. are developed in this paper. It will be expected that the developed health indices can help operators to control power system more successfully and also prevent power system from accident as like as black out in future because operator can make a decision immediately based on more easily visual information of system conditions from too much indices acquisition of complex power system.

Optimal Long-term Transmission Planning Algorithm using Non-linear Branch-and-bound Method (비선형 분산안전법을 이용한 최적장기송전계률 알고리)

  • 박영문;신중린
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.37 no.5
    • /
    • pp.272-281
    • /
    • 1988
  • The problem of optimal transmission system planning is to find the most economical locations and time of transmission line construction under the various constraints such as available rights-of-way, finances, the technical characteristics of power system, and the reliability criterion of power supply, and so on. In this paper the constraint of right-of-way is represented as a finite set of available rights-of-way. And the constructed for a unit period. The electrical constraints are represented in terms of line overload and steady state stability margin. And the reliability criterion is dealt with the suppression of failure cost and with single-contingency analysis. In general, the transmission planning problem requires integer solutions and its objective function is nonlinear. In this paper the objective function is defined as a sum of the present values of construction cost and the minimum operating cost of power system. The latter is represented as a sum of generation cost and failure cost considering the change of yearly load, economic dispatch, and the line contingency. For the calculation of operating cost linear programming is adopted on the base of DC load flow calculation, and for the optimization of main objective function nonlinear Branch-and-Bound algorithm is used. Finally, for improving the efficiency of B & B algorithm a new sensitivity analysis algorithm is proposed.

2-Step Modeling for Daily Load Curve of Up to and Including 100kVA Distribution Transformer (100kVA 이하급 배전용 변압기 일부하 패턴의 2-Step 모델링)

  • Lee, Young-Suk;Kim, Jae-Chul;Yun, Sang-Yun
    • Proceedings of the KIEE Conference
    • /
    • 2001.11b
    • /
    • pp.371-373
    • /
    • 2001
  • In this paper, we present 2-step load cycle for daily load curve of up to and including 100kVA distribution transformer in domestic. Daily load patterns are classified by two methods dependent upon possession information. In case we possess daily load profiles make use of K-mean algorithm and in case we have not daily load profiles, make use of customer information of KEPCO. As the parameters of the load pattern classification, we use are daily load profiles and customer information of each distribution transformers. Data management system is used for NT oracle. We can present peak load magnitude, initial load magnitude and peak load duration for daily load patterns by 2-step load cycle for daily load curve of up to and including 100kVA distribution transformer in domestic. We think that this paper contributes to enhancing the distribution transformer overload criterion.

  • PDF

Study on Plastic Deformation of Interior Support at the Continuous I-Beam Bridge (I-Beam연속교 내측지점의 소성변형에 관한 연구)

  • Chung, Kyung-Hee;Kim, Jin-Sung;Yang, Seung-Ie
    • Journal of the Korean Society of Safety
    • /
    • v.17 no.4
    • /
    • pp.146-152
    • /
    • 2002
  • The steel shows plastic deformation after the yield point exceeds. Because of overloads, the plastic deformation occurs at the interior support of a continuous bridge. The plastic deformation is concentrated at the interior support, and the permanence deformation at the interior support remains after loads pass. Because local yielding causes the positive moment at the interior support, it is called "auto moment". Auto moment redistributes the elastic moment. Because of redistribution, auto moment decreases the negative moment at the interior support of a continuous bridge. In this paper, the moment-rotation curve from Schalling is used. The Plastic rotation is computed by using Beam-line method, and auto moment is calculated based on the experiment curve. The design example is presented using limit state criterion.

Optimal Design of High-Capacity Column-Type Load Cell Using Response Surface Method (반응표면법을 이용한 고하중 기둥형 로드셀의 치적설계)

  • 이태현;이태희;변철웅;박준구
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.754-758
    • /
    • 2002
  • According to the enlargement of production facilities and structures, the requirements of high-capacity load cells are increased for monitoring the process conditions in many fields. Generally, however, the accuracy of the column-type high-capacity load cells is not enough due to the geometric nonlinearity. It is supposed to result from the fact that the whole spring element is under high-level stress for the uniform strain field. In this paper, a new shape of spring element is developed which utilizes the stress concentration. As a design criterion, an object function which quantifies the degree of nonlinearity is defined and optimized by use of response surface modeling. As a result, the weight of the spring element is reduced shout 50% in comparison to the conventional shape. The bonding positions of stain gages are found. which show theoretically zero geometrical nonlinearity, while the ratio of overload protection is reduced from 130% to 125% Also it is shown that the response surface method is very efficient in the optimization approach by use of FEM.

  • PDF