• Title/Summary/Keyword: Overhead power line

Search Result 221, Processing Time 0.029 seconds

Analysis of electric characteristics for extension power supply between different grounding railway distribution system (접지방식이 상이한 철도배전계통의 연장급전을 위한 전기적 특성분석)

  • Jung, Ho-Sung;Han, Moon-Seob;Lee, Chang-Mu;Kwon, Sam-Young;Park, Hyeun-Jun
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.736-741
    • /
    • 2005
  • This paper presents electric characteristics analysis and safe configuration for extension power supply between existent 6.6kV ungrounded distribution system and establishment and improvement 22.9kV direct grounding distribution system. For this, we model 6.6kV ungrounded and 22.9kV direct grounding distribution system of urban underground, ground region. and rural electrical, unelectrical region using PSCAD/EMTDC and analyze voltage drop, charging current, ground and short fault through simulation. To analyze electric characteristics of extension power supply, we simulate extension power supply of overhead line of 6.6kV ungrounded system and underground line of 22.9kV direct grounding system of rural electrical region and propose operation condition for safe extension power supply through result of analysis. Characteristics of voltage drop, charging current, ground and short fault appear almost similarly with electrical characteristic of direct power supply. However, because unbalance of phases may cause relay's malfunction of ungrounded system and ground fault current of direct grounding system may demage facilities of ungrounded system, we propose safe system configuration such as impedance grounding system of neutral point.

  • PDF

Countermeasures to prevent contact between phases on overhead lines (가공송전선로 상(相)간 혼촉으로 인한 고장 예방 대책)

  • Park, Yoon-Seok;Kim, Yong-Rak;Kim, Ho-Ki;Kim, Won-Jin;Choi, Jin-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.109-110
    • /
    • 2007
  • Most transmission lines pass through mountainous terrain and deep valleys, to avoid populated areas. Accordingly, the impact of climate changes, environmental conditions and system expansion have caused an increase in transmission line system fault rates. KEPCO has developed and applied phase-spacers to reduce contact faults between phases. Contact between phases represented 9% of total line faults before the devices were installed. Phase-spacers have reduced faults by up to 3.4% since the phase-spacers were installed in 2005. Also, recently developed devices provide additional economic benefits as they cost about a third of the price as similar devices introduced in foreign countries. Phase-spacers are an effective way to prevent phase contact accidents by maintaining physical space between phases. These spacers will be implemented in areas where contacts are likely to occur. They are expected to reduce accident rates and improve power quality.

  • PDF

A Study on a Fault Location Algorithm Using Wavelet Transform in Combined Transmission Systems (혼합송전계통에서 웨이브렛 변환을 이용한 고장점 탐색 알고리즘에 관한 연구)

  • Jeong, Chae-Gyun;Lee, Jong-Beom;Yun, Yang-Ung
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.5
    • /
    • pp.247-254
    • /
    • 2002
  • This paper describes a fault location algorithm in real combined transmission systems with underground power cable. The algorithm to calculate the fault location was developed using DWT wavelet transform and travelling wave occurred at fault point. And the proposed algorithm is also used the transient signal of one end in stead of the signal information of two ends. On the other hand, in this papers, the method to discriminate fault point between overhead line and cable section is also Proposed. Variety simulations were carried out to verify the accuracy and effectiveness of the proposed algorithm using EMTP/ATFDraw and Matlab. Simulation results show that the proposed method has the excellent ability for discrimination of fault section and fault location in combined transmission systems with power cables.

Home Network Control Protocol for Networked Home Appliances and Its Application

  • Lee Jae-Min;Myoung Kwan-Joo;Kim Dong-Sung;Kwon Wook-Hyun;Ko Beom-Seog;Kim Young-Man;Kim Yo-Hee
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.1 no.1
    • /
    • pp.26-39
    • /
    • 2002
  • This paper describes design and implementation of home network control protocol for networked home appliances. The proposed network protocol has four-layered protocol structure and device-modem interface structure for the flexibility of modems based on power line communication. The standard message set is specified to guarantee the interoperability between various home appliances The proposed protocol can be easily implemented because it has minimum network overhead.

  • PDF

Formulas for Predicting Radio Noise from Overhead HVAC Transmission Lines (초고압 가공 송전선로의 라디오 잡음 예측계산식 개발 (I))

  • Yang, Kwang-Ho;Ju, Mun-No;Myung, Sung-Ho;Shin, Koo-Yong;Lee, Dong-Il
    • Proceedings of the KIEE Conference
    • /
    • 1999.07c
    • /
    • pp.1088-1090
    • /
    • 1999
  • The radio noise produced by corona discharge in high voltage transmission tines is one of the most important line design considerations. Therefore it is necessary to pre-evaluate radio noise for transmission line designers using Prediction formulas or field test results. In this Paper, more accurate and useful formulas for Predicting radio noise during fair and foul weathers in AC transmission lines were proposed through comparison with the existing formulas. Also it was verified by comparing with the long-term measured data from operating lines that the Proposed formulas are very accurate. The Proposed prediction formulas are developed by the applications of nonlinear least square optimization method to radio noise database collected from lines throughout the world.

  • PDF

Fault Location using Neuro-Fuzzy in Combined Transmission Lines with Underground Power Cables (뉴로-퍼지를 이용한 혼합송전계통에서의 고장점 추정)

  • Kim, Kyoung-Ho;Lee, Jong-Beom
    • Proceedings of the KIEE Conference
    • /
    • 2002.11b
    • /
    • pp.319-322
    • /
    • 2002
  • Distance relay is operated in calculating line impedance. It can be worked accurately in overhead line. However, power cables or combined transmission lines need compensation for calculated impedance because cable systems have sheaths, grounding wires and sheath voltage limiters(SVLs) Neuro-fuzzy can be viewed either as a fuzay system, a neural network or fuzzy neural network and it can estimate the location of the fault accurately. In this paper, fault section and fault location can be classified and estimated in neuro- fuzzy inference system and neural network.

  • PDF

Analysis of the inductive interference on the conductor around power system (송전선로 주위의 도체에 미치는 유도장해 해석)

  • Choi, Se-Yong;Nah, Wan-Soo;Choi, Myung-Jun;Lee, Se-Hee;Kim, Dong-Hun;Park, Il-Han;Shin, Myung-Chul
    • Proceedings of the KIEE Conference
    • /
    • 1999.11d
    • /
    • pp.1034-1037
    • /
    • 1999
  • In this paper, we analyze the inductive interference in conductive material around power transmission line. To compute induced eddy currents as well as electromagnetic fields, finite element method(FEM) is used for numerical calculation. The characteristics of conductive material such as gas pipeline, overhead guide wires, conducting earth and so on are taken account of FEM analysis. This research also shows that mitigation wire reduces amount of eddy current in buried gas pipe line.

  • PDF

Analysis of Overhead Rigid Conductor Line for the Subway tunnel section (지하철 터널 구간 강체가선 방식의 특성분석)

  • Yim Geum-Kwang;Chang Sang-Hoon;Kim Wang-Gon
    • Proceedings of the KSR Conference
    • /
    • 2003.10c
    • /
    • pp.493-499
    • /
    • 2003
  • Railroad, a superior mode of public transportation provides safe, efficient, speedy, comfortable and economical service, has fundamentally different characteristics from airplanes, ships and cars. Among the unique characteristics of a railroad is the fact that it operates on fixed track with multiple car trains. The subway system was first selected as the best solution to difficult automobile traffic conditions and environmental problems. Seoul subway no.1line (Jongno line) was opened for service on August 15, 1974. Seoul city has completed and now operates eight subway lines (286.7km) since 1974. At present the subways operate in Busan, Daegu and Incheon city, and are under construction in Gwangju and Daejeon city. The power source for subway trains has been electricity since 1896, and power supply systems are the third rail type and/or the catenary system. The typical catenary system is the rigid bar type. R-bar and T-bar are used in the rigid bar type of catenary system, and the two types of R-bar and T-bar are uesd in Korea also. R-bar is used only for AC 25kV power supply and T-bar for DC 1,500V. From 30 years of subway experience I would like to suggest the most economic catenary system to ensure of safety, reliability and expediency for the railway lines to be constructed and the forthcoming replacement due to the life cycle after studying and analysing the characteristics, advantages and disadvantages of R-bar and T-bar.

  • PDF

Capacity assessment of existing corroded overhead power line structures subjected to synoptic winds

  • Niu, Huawei;Li, Xuan;Zhang, Wei
    • Wind and Structures
    • /
    • v.27 no.5
    • /
    • pp.325-336
    • /
    • 2018
  • The physical infrastructure of the power systems, including the high-voltage transmission towers and lines as well as the poles and wires for power distribution at a lower voltage level, is critical for the resilience of the community since the failures or nonfunctioning of these structures could introduce large area power outages under the extreme weather events. In the current engineering practices, single circuit lattice steel towers linked by transmission lines are widely used to form power transmission systems. After years of service and continues interactions with natural and built environment, progressive damages accumulate at various structural details and could gradually change the structural performance. This study is to evaluate the typical existing transmission tower-line system subjected to synoptic winds (atmospheric boundary layer winds). Effects from the possible corrosion penetration on the structural members of the transmission towers and the aerodynamic damping force on the conductors are evaluated. However, corrosion in connections is not included. Meanwhile, corrosion on the structural members is assumed to be evenly distributed. Wind loads are calculated based on the codes used for synoptic winds and the wind tunnel experiments were carried out to obtain the drag coefficients for different panels of the transmission towers as well as for the transmission lines. Sensitivity analysis is carried out based upon the incremental dynamic analysis (IDA) to evaluate the structural capacity of the transmission tower-line system for different corrosion and loading conditions. Meanwhile, extreme value analysis is also performed to further estimate the short-term extreme response of the transmission tower-line system.

The result on field test of distribution automation in distribution test center (배전 실증시험장에서의 배전자동화 실증시험 결과)

  • Ha, Bok-Nam;Yoon, Tae-Sang;Jeong, Yeong-Ho;Cho, Nam-Hun;Lim, Seong-Il;Kang, Moon-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.182-184
    • /
    • 2000
  • There are several facilities in Kochang distribution test center such as artificial fault generator(AFG), new distribution automation system(NDAS), communication networks (wireless and optic), lumped constant circuit, switches for distribution automation, overhead and underground distribution line. We have been field testing on remote control, data acquisition. remote metering, feeder automation and so on for distribution automation using those equipment.

  • PDF