• Title/Summary/Keyword: Overcome recognition

Search Result 419, Processing Time 0.022 seconds

The Embodiment of the Real-Time Face Recognition System Using PCA-based LDA Mixture Algorithm (PCA 기반 LDA 혼합 알고리즘을 이용한 실시간 얼굴인식 시스템 구현)

  • 장혜경;오선문;강대성
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.4
    • /
    • pp.45-50
    • /
    • 2004
  • In this paper, we propose a new PCA-based LDA Mixture Algorithm(PLMA) for real-time face recognition system. This system greatly consists of the two parts: 1) face extraction part; 2) face recognition part. In the face extraction part we applied subtraction image, color filtering, eyes and mouth region detection, and normalization method, and in the face recognition part we used the method mixing PCA and LDA in extracted face candidate region images. The existing recognition system using only PCA showed low recognition rates, and it is hard in the recognition system using only LDA to apply LDA to the input images as it is when the number of image pixels ire small as compared with the training set. To overcome these shortcomings, we reduced dimension as we apply PCA to the normalized images, and apply LDA to the compressed images, therefore it is possible for us to do real-time recognition, and we are also capable of improving recognition rates. We have experimented using self-organized DAUface database to evaluate the performance of the proposed system. The experimental results show that the proposed method outperform PCA, LDA and ICA method within the framework of recognition accuracy.

Camera-based Music Score Recognition Using Inverse Filter

  • Nguyen, Tam;Kim, SooHyung;Yang, HyungJeong;Lee, GueeSang
    • International Journal of Contents
    • /
    • v.10 no.4
    • /
    • pp.11-17
    • /
    • 2014
  • The influence of acquisition environment on music score images captured by a camera has not yet been seriously examined. All existing Optical Music Recognition (OMR) systems attempt to recognize music score images captured by a scanner under ideal conditions. Therefore, when such systems process images under the influence of distortion, different viewpoints or suboptimal illumination effects, the performance, in terms of recognition accuracy and processing time, is unacceptable for deployment in practice. In this paper, a novel, lightweight but effective approach for dealing with the issues caused by camera based music scores is proposed. Based on the staff line information, musical rules, run length code, and projection, all regions of interest are determined. Templates created from inverse filter are then used to recognize the music symbols. Therefore, all fragmentation and deformation problems, as well as missed recognition, can be overcome using the developed method. The system was evaluated on a dataset consisting of real images captured by a smartphone. The achieved recognition rate and processing time were relatively competitive with state of the art works. In addition, the system was designed to be lightweight compared with the other approaches, which mostly adopted machine learning algorithms, to allow further deployment on portable devices with limited computing resources.

Infrared Target Recognition using Heterogeneous Features with Multi-kernel Transfer Learning

  • Wang, Xin;Zhang, Xin;Ning, Chen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.9
    • /
    • pp.3762-3781
    • /
    • 2020
  • Infrared pedestrian target recognition is a vital problem of significant interest in computer vision. In this work, a novel infrared pedestrian target recognition method that uses heterogeneous features with multi-kernel transfer learning is proposed. Firstly, to exploit the characteristics of infrared pedestrian targets fully, a novel multi-scale monogenic filtering-based completed local binary pattern descriptor, referred to as MSMF-CLBP, is designed to extract the texture information, and then an improved histogram of oriented gradient-fisher vector descriptor, referred to as HOG-FV, is proposed to extract the shape information. Second, to enrich the semantic content of feature expression, these two heterogeneous features are integrated to get more complete representation for infrared pedestrian targets. Third, to overcome the defects, such as poor generalization, scarcity of tagged infrared samples, distributional and semantic deviations between the training and testing samples, of the state-of-the-art classifiers, an effective multi-kernel transfer learning classifier called MK-TrAdaBoost is designed. Experimental results show that the proposed method outperforms many state-of-the-art recognition approaches for infrared pedestrian targets.

A Novel Face Recognition Algorithm based on the Deep Convolution Neural Network and Key Points Detection Jointed Local Binary Pattern Methodology

  • Huang, Wen-zhun;Zhang, Shan-wen
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.363-372
    • /
    • 2017
  • This paper presents a novel face recognition algorithm based on the deep convolution neural network and key point detection jointed local binary pattern methodology to enhance the accuracy of face recognition. We firstly propose the modified face key feature point location detection method to enhance the traditional localization algorithm to better pre-process the original face images. We put forward the grey information and the color information with combination of a composite model of local information. Then, we optimize the multi-layer network structure deep learning algorithm using the Fisher criterion as reference to adjust the network structure more accurately. Furthermore, we modify the local binary pattern texture description operator and combine it with the neural network to overcome drawbacks that deep neural network could not learn to face image and the local characteristics. Simulation results demonstrate that the proposed algorithm obtains stronger robustness and feasibility compared with the other state-of-the-art algorithms. The proposed algorithm also provides the novel paradigm for the application of deep learning in the field of face recognition which sets the milestone for further research.

Secured Authentication through Integration of Gait and Footprint for Human Identification

  • Murukesh, C.;Thanushkodi, K.;Padmanabhan, Preethi;Feroze, Naina Mohamed D.
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.6
    • /
    • pp.2118-2125
    • /
    • 2014
  • Gait Recognition is a new technique to identify the people by the way they walk. Human gait is a spatio-temporal phenomenon that typifies the motion characteristics of an individual. The proposed method makes a simple but efficient attempt to gait recognition. For each video file, spatial silhouettes of a walker are extracted by an improved background subtraction procedure using Gaussian Mixture Model (GMM). Here GMM is used as a parametric probability density function represented as a weighted sum of Gaussian component densities. Then, the relevant features are extracted from the silhouette tracked from the given video file using the Principal Component Analysis (PCA) method. The Fisher Linear Discriminant Analysis (FLDA) classifier is used in the classification of dimensional reduced image derived by the PCA method for gait recognition. Although gait images can be easily acquired, the gait recognition is affected by clothes, shoes, carrying status and specific physical condition of an individual. To overcome this problem, it is combined with footprint as a multimodal biometric system. The minutiae is extracted from the footprint and then fused with silhouette image using the Discrete Stationary Wavelet Transform (DSWT). The experimental result shows that the efficiency of proposed fusion algorithm works well and attains better result while comparing with other fusion schemes.

Face Recognition using LDA Mixture Model (LDA 혼합 모형을 이용한 얼굴 인식)

  • Kim Hyun-Chul;Kim Daijin;Bang Sung-Yang
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.8
    • /
    • pp.789-794
    • /
    • 2005
  • LDA (Linear Discriminant Analysis) provides the projection that discriminates the data well, and shows a very good performance for face recognition. However, since LDA provides only one transformation matrix over whole data, it is not sufficient to discriminate the complex data consisting of many classes like honan faces. To overcome this weakness, we propose a new face recognition method, called LDA mixture model, that the set of alf classes are partitioned into several clusters and we get a transformation matrix for each cluster. This detailed representation will improve the classification performance greatly. In the simulation of face recognition, LDA mixture model outperforms PCA, LDA, and PCA mixture model in terms of classification performance.

Enhanced Object Recognition System using Reference Point and Size (기준점과 크기를 사용한 객체 인식 시스템 향상)

  • Lee, Taehwan;Rhee, Eugene
    • Journal of IKEEE
    • /
    • v.22 no.2
    • /
    • pp.350-355
    • /
    • 2018
  • In this paper, a system that can classify the objects in the image according to their sizes using the reference points is proposed. The object is studied with samples. The proposed system recognizes and classifies objects by the size in images acquired using a mobile phone camera. Conventional object recognition systems classify objects using only object size. As the size of the object varies depending on the distance, such systems have the disadvantage that an error may occurs if the image is not acquired with a certain distance. In order to overcome the limitation of the conventional object recognition system, the object recognition system proposed in this paper can classify the object regardless of the distance with comparing the size of the reference point by placing it at the upper left corner of the image.

Development of a Fingerprint Recognition System for Various Fingerprint Image (다양한 지문 영상에 강인한 지문인식 시스템 개발)

  • 이응봉;전성욱;유춘우;김학일
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.40 no.6
    • /
    • pp.10-19
    • /
    • 2003
  • As the technical demand for biometrics is increasing, users expect that fingerprint recognition systems are operable with various fingerprint readers. However, current commercial off-the-shelf fingerprint recognition systems are no interoperable due to the lack of standardization in application program interfaces for fingerprint readers. A cross-matching fingerprint recognition system is a person authentication system based on fingerprints and utilizing different types of fingerprint readers. It should be able to overcome variations in fingerprint images acquired by different readers, such as the size, resolution, contrast of images. The purpose of this research is to develop across-matching fingerprint recognition system for fingerprint research of different sensing mechanism. The fingerprint readers tested in this study are optical, semiconductor and thermal sensor modules, and the prpoposed cross-matching system utilizes both a minutiae-based similarity and a ridge count-based similarity in matching fingerprint images acquired by different sensors.

Video Expression Recognition Method Based on Spatiotemporal Recurrent Neural Network and Feature Fusion

  • Zhou, Xuan
    • Journal of Information Processing Systems
    • /
    • v.17 no.2
    • /
    • pp.337-351
    • /
    • 2021
  • Automatically recognizing facial expressions in video sequences is a challenging task because there is little direct correlation between facial features and subjective emotions in video. To overcome the problem, a video facial expression recognition method using spatiotemporal recurrent neural network and feature fusion is proposed. Firstly, the video is preprocessed. Then, the double-layer cascade structure is used to detect a face in a video image. In addition, two deep convolutional neural networks are used to extract the time-domain and airspace facial features in the video. The spatial convolutional neural network is used to extract the spatial information features from each frame of the static expression images in the video. The temporal convolutional neural network is used to extract the dynamic information features from the optical flow information from multiple frames of expression images in the video. A multiplication fusion is performed with the spatiotemporal features learned by the two deep convolutional neural networks. Finally, the fused features are input to the support vector machine to realize the facial expression classification task. The experimental results on cNTERFACE, RML, and AFEW6.0 datasets show that the recognition rates obtained by the proposed method are as high as 88.67%, 70.32%, and 63.84%, respectively. Comparative experiments show that the proposed method obtains higher recognition accuracy than other recently reported methods.

Robust Detection Technique for Abandoned Objects to Overcome Visual Occlusion (시각적 가려짐을 극복하는 강인한 유기물 탐지 기법)

  • Kim, Won
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.6
    • /
    • pp.23-29
    • /
    • 2010
  • Nowadays it is required to design intelligent visual surveillance systems which automatically detect abandoned objects in public places to strengthen the social safety. Already recognized abandoned objects can be occluded partially or fully by surrounding people in public places after the first recognition. To improve an essential recognition performance index PAT, the system should overcome the occlusion problems. In this research, a design scheme is newly proposed to construct the robust detection system which is comprised of multiple stages considering the occlusion problem. To show the feasibilities of the proposed system, the evaluation was tried for the prepared image streams including 6 various situations and the experimental results show 96% and 75% in PAT performance for intrusion and abandoning events, respectively. Finally in spite of full occlusions by multiple persons, the proposed system shows the capability to continuously recognize the abandoned object after complex occlusions disappear.