• Title/Summary/Keyword: Over-the-air computation

Search Result 28, Processing Time 0.026 seconds

Control Signal Computation using Wireless Channel (무선 채널을 활용한 제어 신호 컴퓨팅)

  • Jung, Mingyu;Park, Pangun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.7
    • /
    • pp.986-992
    • /
    • 2021
  • To stabilize closed-loop wireless control systems, the state-of-the-art approach receives the individual sensor measurements at the controller and then sends the computed control signal to the actuators. We propose an over-the-air controller scheme where all sensors attached to the plant transmit scaled sensing signals simultaneously to the actuator, and the actuator then computes the feedback control signal by scaling the received signal. The over-the-air controller essentially adopts the over-the-air computation concept to compute the control signal for closed-loop wireless control systems. In contrast to the state-of-the-art sensor-to-controller and controller-to-actuator communication approach, the over-the-air controller exploits the superposition properties of multiple-access wireless channels to complete the communication and computation of a large number of sensing signals in a single communication resource unit. Therefore, the proposed scheme can obtain significant benefits in terms of low actuation delay and low resource utilization with a simple network architecture that does not require a dedicated controller.

Numerical simlation of nanosecond pulsed laser ablation in air (대기중 나노초 펄스레이저 어블레이션의 수치계산)

  • 오부국;김동식
    • Laser Solutions
    • /
    • v.6 no.3
    • /
    • pp.37-45
    • /
    • 2003
  • Pulsed laser ablation is important in a variety of engineering applications involving precise removal of materials in laser micromachining and laser treatment of bio-materials. Particularly, detailed numerical simulation of complex laser ablation phenomena in air, taking the interaction between ablation plume and air into account, is required for many practical applications. In this paper, high-power pulsed laser ablation under atmospheric pressure is studied with emphasis on the vaporization model, especially recondensation ratio over the Knudsen layer. Furthermore, parametric studies are carried out to analyze the effect of laser fluence and background pressure on surface ablation and the dynamics of ablation plume. In the numerical calculation, the temperature, pressure, density, and vaporization flux on a solid substrate are obtained by a heat-transfer computation code based on the enthalpy method. The plume dynamics is calculated considering the effect of mass diffusion into the ambient air and plasma shielding. To verify the computation results, experiments for measuring the propagation of a laser induced shock wave are conducted as well.

  • PDF

Design and Performance Evaluation of Superstructure Modification for Air Drag Reduction of a Container Ship (공기저항 저감을 위한 컨테이너선 상부구조물 형상설계 및 성능평가)

  • Kim, Yoonsik;Kim, Kwang-Soo;Jeong, Seong-Wook;Jeong, Seung-Gyu;Van, Suak-Ho;Kim, Jin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.52 no.1
    • /
    • pp.8-18
    • /
    • 2015
  • Reduction of the fuel oil consumption and corresponding greenhouse gas exhausted from ships is an important issue for today's ship design and shipping. Several concepts and devices on the superstructure of a container ship were suggested and tested in the wind tunnel to estimate the air drag reduction. As a preliminary performance evaluation, air drag contributions of each part of the superstructure and containers were estimated based on RANS simulation respectively. Air drag reduction efficiency of shape modification and add-on devices on the superstructure and containers was also estimated. Gap-protectors between containers and a visor in front of upper deck were found to be most effective for drag reduction. Wind tunnel tests had been carried out to confirm the drag reduction performance between the baseline(without any modification) configuration and two modified superstructure configurations which were designed and chosen based on the computation results. The test results with the modified configurations show considerable aerodynamic drag reduction, especially the gap-protectors between containers show the largest reduction for the wide range of heading angles. RANS computations for three configurations were performed and compared with the wind tunnel tests. Computation result shows the similar drag reduction trend with experiment for small heading angles. However, the computation result becomes less accurate as heading angle is increasing where the massively separated flow is spread over the leeward side.

A Simulation for Dry Depositon Velocity of Air Pollutants over various surfaces. (지표 부근에서의 대기오염물질 건성 침적속도에 관한 모수화)

  • 이화운;박종길
    • Journal of Environmental Science International
    • /
    • v.3 no.4
    • /
    • pp.367-372
    • /
    • 1994
  • A predictive model is demonstrated for gas removal rates from the aklosphere by dw deposition. Typical deposition velocities are complex functions of surface types, atmospheric stabilities, friction velocities, air pollutants, and so on. In this paper we simulated the calculation of dry deposition velocities near the earth surfaces, simultaneously we estimated real dry deposition velocities using the previous simulation. The measurement taken over a deciduous forest by Padro et d.(1988) were used to verify this model. In the comparison of the value of deposition velocity between numerical computation and observation, there are partially overestimations and underestimations between them, but we can speak that they are in a good accordance.

  • PDF

NUMERICAL METHODS FOR COMPUTATIONS OF NONEQUILIBRIUM HYPERSONIC FLOW AROUND BODIES

  • Park, Tae-Hoon;Kim, Pok-Son
    • Journal of applied mathematics & informatics
    • /
    • v.9 no.1
    • /
    • pp.1-13
    • /
    • 2002
  • In this paper we present numerical methods fur computations of nonequilibrium hypersonic flow of air around bodies including chemical reaction effects and present numerical result of the flow over concave corners. We developed implicit finite difference method to overcome numerical difficulties with the lack of resolution behind the shock and near the body. Using our method we were able to find details of the flow properties near the shock and body and were able to continue the computation of the flow for a long distance from the corner of the body.

EFFECTS OF PLACEMENT OF A TORUS PLATE COVER ON AIR FLOW IN A SPINNER EQUIPMENT (원환형 덮개장착이 스피너 장비의 기류에 미치는 영향)

  • Kwak H.S.;Yang J.O.;Lee S.W.;Park S.H.
    • Journal of computational fluids engineering
    • /
    • v.11 no.3 s.34
    • /
    • pp.52-58
    • /
    • 2006
  • A numerical investigation is made of air flow in a spinner equipment used for cleanning and drying flat display panels. A unique feature of the spinner under question is the placement of a torus plate cover over the rotating plate. The turbulent flow is driven by rotation of a large disk and suction by the exhaust system connected to vacuum chamber. The flow is modelled as an axisymmetric two-dimensional flow and computation is conducted by using the FLUENT package with a version of k-$\varepsilon$ turbulence model. The required capacity of the exhaust system is assessed numerically. The usefulness of the cover in controlling air flow circulation is examined. A computational trouble shooting is attempted to resolve the problem of panel rising which occurred in real experiment.

Conformal Mapping for Cogging Torque computation in IPM motor (등각 사상법을 이용한 매입형 영구자석 전동기의 코깅토크 해석)

  • Fang, Liang;Kwon, Soon-O;Jung, Jae-Woo;Hong, Jung-Pyo;Ha, Kyung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1204-1206
    • /
    • 2005
  • This paper deals with magnetic field analysis and computation of cogging torque in IPM motor with an analytical method, which is based on the Conformal Mapping technique. The magnetic field is analyzed by solving space harmonic field analysis due to inserted PM magnetizing distribution. Conformal Mapping method is then used for considering the slot opening effect and rotor saliency effect on the air-gap field magnetic distribution. Then, by integrating the field over the stator surface, cogging torque is calculated. The validity of the proposed analytical method is confirmed by comparing the results with 2-D FEA results.

  • PDF

Numerical computation of pulsed laser ablation phenomena by thermal mechanisms (열적 메커니즘에 의한 펄스레이저 어블레이션 현상의 수치계산)

  • Oh, Bu-Kuk;Kim, Dong-Sik
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1572-1577
    • /
    • 2003
  • High-power pulsed laser ablation under atmospheric pressure is studied utilizing numerical and experimental methods with emphasis on recondensation ratio, and the dynamics of the laser induced vapor flow. In the numerical calculation, the temperature pressure, density and vaporization flux on a solid substrate are first obtained by a heat-transfer computation code based on the enthalpy method, and then the plume dynamics is calculated by using a commercial CFD package. To confirm the computation results, the probe beam deflection technique was utilized for measuring the propagation of a laser induced shock wave. Discontinuities of properties and velocity over the Knudsen layer were investigated. Related with the analysis of the jump condition, the effect of the recondesation ratio on the plume dynamics was examined by comparing the pressure, density, and mass fraction of ablated aluminum vapor. To consider the effect of mass transfer between the ablation plume and air, unlike the most previous investigations, the equation of species conservation is simultaneously solved with the Euler equations. Therefore the numerical model computes not only the propagation of the shock front but also the distribution of the aluminum vapor. To our knowledge, this is the first work that employed a commercial CFD code in the calculation of pulsed ablation phenomena.

  • PDF

A Computation Method for Time of Flight in the Anti-Aircraft Gun Fire Control System (대공화기 탄자비행시간 계산 기법)

  • Kim, Jaehun;Kim, Euiwhan;Yu, Sukjin;Kim, Sungho
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.4 no.11
    • /
    • pp.361-368
    • /
    • 2015
  • In AAGFCS the effective range is regarded as a range for the bullet's speed exceeding the speed of sound to damage the stationary target. Hence the real engagement range might be extended over the effective range for the approaching target since bullet's relative speed to the target increases depending on the approaching speed. However previous TOF equations have good computation accuracy within the effective range only, and they can not be used above that range due to their bad accuracy. We propose an accurate TOF computation method which can be used both within and above the effective range in real time. Some simulation results are shown to demonstrate usefulness of our algorithm for the 30mm projectile.

Flow Control and Heat Transfer Enhancement from a Heated Block by an Inflow Pulsation (II) Thermal Field Computation (입구 유동 가진에 의한 사각 발열체 주위의 유동제어 및 열전달촉진 (II) 온도장 수치해석)

  • 리광훈;김서영;성형진
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.7
    • /
    • pp.599-606
    • /
    • 2002
  • uniform temperature. The surfaces of the block are taken at a constant higher temperature. The channel walls are assumed to be adiabatic. Results on the time-dependent temperature field are obtained and averaged over a cycle of pulsation. The effect of the important governing parameters, such as the Strouhal number on the flow and the heat transfer is investigated in detail. The results indicate that the recirculating flow behind the block are substantially affected by the pulsation frequency. These, in turn, have a strong influence on the thermal transport from the heated element to the pulsating flow. The frequency at which the enhancement is maximum is determined.