• Title/Summary/Keyword: Over Direction

Search Result 1,916, Processing Time 0.034 seconds

Characteristics of Wind Direction Shear and Momentum Fluxes within Roughness Sublayer over Sloping Terrain (경사가 있는 지형의 거칠기 아층에서 풍향시어와 운동량 플럭스의 특성)

  • Lee, Young-Hee
    • Atmosphere
    • /
    • v.25 no.4
    • /
    • pp.591-600
    • /
    • 2015
  • We have analyzed wind and eddy covariance data collected within roughness sublayer over sloping terrain. The study site is located on non-flat terrain with slopes in both south-north and east-west directions. The surface elevation change is smaller than the height of roughness element such as building and tree. This study examines the directional wind shear for data collected at three levels in the lowest 10 m in the roughness sublayer. The wind direction shear is caused by drag of roughness element and terrain-induced motions at this site. Small directional shear occurs when wind speed at 10 m is strong and wind direction at 10 m is southerly which is the same direction as upslope flow near surface at this site during daytime. Correlation between vertical shear of lateral momentum and lateral momentum flux is smaller over steeply sloped surface compared to mildly sloped surface and lateral momentum flux is not down-gradient over steeply sloped surface. Quadrant analysis shows that the relative contribution of four quadrants to momentum flux depends on both surface slope and wind direction shear.

An Experimental Investigation on Flame Spreading Over Liquid Fuel Surface (액체연료표면에서의 화염 확장에 관한 연구)

  • 김한석;백승욱;문정기
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.2
    • /
    • pp.271-276
    • /
    • 1989
  • Flame spreading over a hydrocarbon fuel surface has been investigated for liquid fuels such as kerosene and diesel, using thermocouple. Without forced convection, it was clearly found that the flame spreading was mainly controlled by the liquid fuel surface flow. Furthermore, the radiative heat transfer was dominant over a conductive heat transfer in kerosene. But in diesel the latter was found to be more influential than the former, when the direction of windflow was the same as that of flame spreading. The oscillation period and amplitude of the flame spreading velocity increase if the windflow is blowing in the direction of the flame spreading velocity, and decrease if the direction of windflow is blowing against the flame spreading direction.

Electrical Conductivity and Optical Properties of Elongated Conducting Polymer (연신도전성고분자의 전기전도와 광학적 특성)

  • 박대희;강성화;임기조
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1994.05a
    • /
    • pp.59-62
    • /
    • 1994
  • Tact Electrical conductivity. optical absorption spectra of poly(p-phenylene vinylene) and their dependence on stretching are discussed in detail. The conductivity in the parallel direction to the stretching is higher over one order in magnitude than that in the perpendicular direction to the stretching is higher over one order in magnitude than that in the perpendicular direction to the stretching. The photocurrent spectrum for the ligh polarized parallel to the chain direction is much enhanced in lower photon energy compared with that for the light polarized perpendicular to that direction. The result may be originated in the difference of energies which is needed to photogenerate carriers wi th the light polarized parallel and perpendicular to the chain stretched direction.

  • PDF

PREFERRED ORIENTATION OF TIN FILM STUDIED BT A REAL TIME SYNCHROTRON X-RAY SCATTERING

  • Je, J.H.;Noh, D.Y.
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.5
    • /
    • pp.399-406
    • /
    • 1996
  • The orientational cross-over phenomena in an RF sputtering growth of TiN films were studied in an in-situ, real-time synchrotron x-ray scattering experiment. For the films grown with pure Ar sputtering gas, the cross-over from the more strained (002)-oriented grains to the less strained (111)-oriented grains occurred as the film thickness was increased. As the sputtering power was increased, the cross-over thickness, at which the growth orientation changes from the <002> to the <111> direction, was decreased. The addition of $N_2$ besides Ar as sputtering gas suppressed the cross-over, and consequently resulted in the (002) preferred orientation without exhibiting the cross-over. We attribute the observed cross-over phenomena to the competition between the surface and the strain energy. The x-ray powder diffraction, the x-ray reflectivity, and the ex-situ AFM surface topology study consistently suggest that the microscopic growth front was in fact always the (002) planes. In the initial stage of growth, the (002) planes were aligned to the substrate surface to minimize the surface energy. At later stages, however, the (002) growth front tilted away from the surface by about $60^{\circ}$ to relax the strain, which caused the cross-over of the preferred growth direction to the <111> direction.

  • PDF

A Multi-Channel Correlative Vector Direction Finding System Using Active Dipole Antenna Array for Mobile Direction Finding Applications

  • Choi, Jun-Ho;Park, Cheol-Sun;Nah, Sun-Phil;Jang, Won
    • Journal of electromagnetic engineering and science
    • /
    • v.7 no.4
    • /
    • pp.161-168
    • /
    • 2007
  • A fast correlative vector direction finding(CVDF) system using active dipole antenna array for mobile direction finding(DF) applications is presented. To develop the CVDF system, the main elements such as active dipole antenna, multi-channel direction finder, and search receiver are designed and analyzed. The active antenna is designed as composite structure to improve the filed strength sensitivity over the wide frequency range, and the multi-channel direction finder and search receiver are designed using DDS-based PLL with settling time of below 35 us to achieve short signal processing time. This system provides the capabilities of the high DF sensitivity over the wide frequency range and allows for high probability of intercept and accurate angle of arrival(AOA) estimation for agile signals. The design and performance analysis according to the external noise and modulation schemes of the CVDF system with five-element circular array are presented in detail.

LARGE-EDDY SIMULATION OF TURBULENT BOUNDARY-LAYER FLOW OVER A URBAN TOPOGRAPHY (도시지형을 지나는 난류 경계층 유동의 대와류 수치모사)

  • Kim, Byung-Gu;Lee, Chang-Hoon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.571-574
    • /
    • 2010
  • Large-eddy simulation has been conducted to simulate turbulent boundary-layer flows over an array of regularly distributed obstacles considering various cases of a wind incident angle. The effect of wind direction was investigated in the square cube array that periodic boundary condition was imposed. Characteristics of the turbulent flow over the obstacle array have been found to be very sensitive to the direction of prevailing wind or of mean wind or of mean pressure gradient but varied with height, specially below the urban canopy. Turbulent statistics are changed sensitively with the direction of mean pressure gradient around 10 degree.

  • PDF

NUMERICAL STUDY OF THE FORMATION OF LINEAR DUNES

  • Zhang Ruyan;Kan Makiko;Kawamura Tetuya
    • Journal of computational fluids engineering
    • /
    • v.10 no.1
    • /
    • pp.31-38
    • /
    • 2005
  • Three-dimensional flow over the sand dunes have been studied numerically by using Large-Eddy Simulation (LES) method. In the direction of initial flow and span direction cyclic boundary conditions are imposed for velocity and pressure. The movement of the sand dune which is formed by converging wind direction has been investigated. The numerical method employed in this study can be divided into three parts: (i) calculation of the air flow over the sand dune using standard MAC method with a generalized coordinate system; (ii) estimation of the sand transfer caused by the flow through the friction; (iii) determination of the shape of the sand surface. Since the computational area has been changed due to step (iii), (i)-(iii) are repeated. The simulated dune, which has initially elliptic cross section, extends at the converging direction, which is known as linear dunes.

Determination of Cutting Direction for Tool Path Minimization in Zigzag Milling Operation (Zigzag 밀링가공에서 공구경로 최소화를 위한 가공방향 결정방법)

  • Kim, Byoung-Keuk;Park, Joon-Young
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.27 no.1
    • /
    • pp.69-88
    • /
    • 2001
  • In the zigzag milling operation, an important issue is to design a machining strategy which minimizes the cutting time. An important variable for minimization of cutting time is the tool path length. The tool path is divided into cutting path and non-cutting path. Cutting path can be subdivided into tool path segment and step-over, and non-cutting path can be regarded as the tool retraction. We propose a new method to determine the cutting direction which minimizes the length of tool path in a convex or concave polygonal shape including islands. For the minimization of tool path length, we consider two factors such as step-over and tool retraction. Step-over is defined as the tool path length which is parallel to the boundary edges for machining area and the tool retraction is a non-cutting path for machining any remaining regions. In the determination of cutting direction, we propose a mathematical model and an algorithm which minimizes tool retraction length in complex shapes. With the proposed methods, we can generate a tool path for the minimization of cutting time in a convex or concave polygonal shapes including islands.

  • PDF

Analysis of Collision-induced Derailments of a Wheel-set Model Using MBD and FEM Simulation (MBD와 FEM을 이용한 단일윤축 모델의 충돌 후 탈선거동의 해석)

  • Lee, Jun-Ho;Koo, Jeong-Seo
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1868-1873
    • /
    • 2011
  • In this paper, a theoretical formulation of a simplified wheel-set model for collision-induced derailments was evaluated by numerical simulations for the wheel-climb derailment and wheel-lift derailment types. The derailment types were classified into the wheel-climb derailment and the wheel-lift derailment according to the friction force direction of the wheel-flange. The wheel-climb derailment type was classified into Climb-up, Climb/Roll-over, and Roll-over-C, and wheel-lift derailment type was classified into Slip-up, Slip/Roll-over and Roll-over-L. To verify the theoretical equations derived for the wheel-climb derailment and the wheel-lift derailment, dynamic simulations using RecurDyn of Functionbay and Ls-Dyna of LSTC were performed and compared for some examples. The derailment predictions of the suggested theoretical formulation were in good agreement with those of the numerical simulations. The direction of the frictional force between the wheel-flange and the rail can be well predicted using the suggested derailment formulation at a initial derailment.

  • PDF

The Study of Direction Finding Algorithms for Coherent Multiple Signals in Uniform Circular Array (등각원형배열을 고려한 코히어런트 다중신호 방향탐지 기법 연구)

  • Park, Cheol-Sun;Lee, Ho-Joo;Jang, Won
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.12 no.1
    • /
    • pp.97-105
    • /
    • 2009
  • In this paper, the performance of AP(Alternating Projection) and EM(Expectation Maximization) algorithms is investigated in terms of detection of multiple signals, resolvability of coherent signals and the efficiency of sensor array processing. The basic idea of these algorithms is utilization of relaxation technique of successive 1D maximization to solve a direction finding problem by maximizing the multidimensional likelihood function. It means that the function is maximized over only for a single parameter while the other parameters are fixed at each step of the iteration. According to simulation results, the algorithms showed good performance for both incoherent and coherent multiple signals. Moreover, some advantages are identified for direction finding with very small samples and fast convergence. The performance of AP algorithm is compared with that of EM using multiple criteria such as the number of sensor, SNR, the number of samples, and convergence speed over uniform circular array. It is resulted AP algorithm is superior to EM overally except for one criterion, convergence speed. Especially, for EM algorithm there is no performance difference between incoherent and coherent case. In conclusion, AP and EM are viable and practical alternatives, which can be applied to a direction under due to the resolvability of multi-path signals, reliable performance and no troublesome eigen-decomposition of the sample-covariance matrix.