• Title/Summary/Keyword: Output voltage and frequency

Search Result 1,471, Processing Time 0.025 seconds

PQ Control of Micro Grid Inverters with Axial Voltage Regulators

  • Chen, Yang;Zhao, Jinbin;Qu, Keqing;Li, Fen
    • Journal of Power Electronics
    • /
    • v.15 no.6
    • /
    • pp.1601-1608
    • /
    • 2015
  • This paper presents a PQ control strategy for micro grid inverters with axial voltage regulators. The inverter works in the voltage-controlled mode and can help improve the terminal power quality. The inverter has two axial voltage regulators. The 1st regulator involves the output voltage amplitude and output impedance, while the 2nd regulator controls the output frequency. The inverter system is equivalent to a controllable voltage source with a controllable inner output impedance. The basic PQ control for micro grid inverters is easy to accomplish. The output active and reactive powers can be decoupled well by controlling the two axial voltages. The 1st axial voltage regulator controls the reactive power, while the 2nd regulator controls the active power. The paper analyses the axial voltage regulation mechanism, and evaluates the PQ decoupling effect mathematically. The effectiveness of the proposed control strategy is validated by simulation and experimental results.

Control and Design of Input Series-Output Parallel Connected Converter for High Speed Train Power System (고속전철 보조전원 장치용 입력직렬-출력병렬 컨버터의 제어 및 설계)

  • Kim, Jeong-Won;Yu, Jeong-Sik;Jo, Bo-Hyeong
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.4
    • /
    • pp.282-290
    • /
    • 2000
  • In this paper, the charge control with the input voltage feedback is proposed for the input series-output series-output parallel connected converter configuration for the high speed train power system application. This control scheme accomplishes the output current sharing for the output-parallel connected modules as well as the input voltage sharing for the input series connected modules for all operating conditions including the transients. It also offers the robustness for the input voltage sharing control according to the component value mismatches among the modules. And this configuration enables the usage of MOSFET for a high voltage system allowing a higher switching frequency for lighter system weight and smaller size. The performance of the proposed scheme is verified through the experimental results.

  • PDF

Medium Voltage Resonant Converter with Balanced Input Capacitor Voltages and Output Diode Currents

  • Lin, Bor-Ren;Du, Yan-Kang
    • Journal of Power Electronics
    • /
    • v.15 no.2
    • /
    • pp.389-398
    • /
    • 2015
  • This paper presents a 1.92 kW resonant converter for medium voltage applications that uses low voltage stress MOSFETs (500V) to achieve zero voltage switching (ZVS) turn-on. In the proposed converter, four MOSFETs are connected in series to limit the voltage stress of the power switches at half of the input voltage. In addition, three resonant circuits are adopted to share the load current and to reduce the current stress of the passive components. Furthermore, the transformer primary and secondary windings are connected in series to balance the output diode currents for medium power applications. Split capacitors are adopted in each resonant circuit to reduce the current stress of the resonant capacitors. Two balance capacitors are also used to automatically balance the input capacitor voltage in every switching cycle. Based on the circuit characteristics of the resonant converter, the MOSFETs are turned on under ZVS. If the switching frequency is less than the series resonant frequency, the rectifier diodes can be turned off under zero current switching (ZCS). Experimental results from a prototype with a 750-800 V input and a 48V/40A output are provided to verify the theoretical analysis and the effectiveness of the proposed converter.

Buck and Half Bridge Series DC-DC Converter (강압형과 하프 브리지 직렬형 DC-DC 컨버터)

  • Kim Chang-Sun
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.12
    • /
    • pp.616-621
    • /
    • 2005
  • We considered of the buck and half bridge series DC-DC converter. It has good applications in areas with low voltage/high current, wide input voltage. The buck converter ratings and the half bridge converter ratings are $36\~72V$ input and 22V/5A output, $19\~24V$ input and 3.3V/30A output, respectively. Developed the buck and half Bridge series DC-DC converter ratings are of $36\~72V$ input and 3.3V/30A output. The buck converter is operated with zero voltage switching process to reduce the switching losses. The $80.1\%\~97.6\%$ of the efficiency is measured at $18.4{\mu}H$ output filter inductance of buck converter. In the half bridge converter, the $86\%\~96.4\%$ efficiency is measured at 150kHz switching frequency with PQI core. In the case of synchronized the buck and half bridge DC-DC converter, the measured efficiency is higher than that of the unsynchronized converter. In the synchronized converter, the maximum efficiency is measured up to $92.3\%$ with PQI core at 150kHz. 7A output.

High Efficiency Design Procedure of a Second Stage Phase Shifted Full Bridge Converter for Battery Charge Applications Based on Wide Output Voltage and Load Ranges

  • Cetin, Sevilay
    • Journal of Power Electronics
    • /
    • v.18 no.4
    • /
    • pp.975-984
    • /
    • 2018
  • This work presents a high efficiency phase shifted full bridge (PSFB) DC-DC converter for use in the second stage of a battery charger for neighborhood electrical vehicle (EV) applications. In the design of the converter, Lithium-ion battery cells are preferred due to their high voltage and current rates, which provide a high power density. This requires wide range output voltage regulation for PSFB converter operation. In addition, the battery charger works with a light load when the battery charge voltage reaches its maximum value. The soft switching of the PSFB converter depends on the dead time optimization and load condition. As a result, the converter has to work with soft switching at a wide range output voltage and under light conditions to reach high efficiency. The operation principles of the PSFB converter for the continuous current mode (CCM) and the discontinuous current mode (DCM) are defined. The performance of the PSFB converter is analyzed in detail based on wide range output voltage and load conditions in terms of high efficiency. In order to validate performance analysis, a prototype is built with 42-54 V / 15 A output values at a 200 kHz switching frequency. The measured maximum efficiency values are obtained as 94.4% and 76.6% at full and at 2% load conditions, respectively.

Characteristics of Step-Down Transformer in PZT Piezoelectric Ceramics (PZT계 압전 세라믹 변압기의 감압특성)

  • 김오수;이준형;손정호;남효덕;조상희
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.11
    • /
    • pp.885-891
    • /
    • 2001
  • Ring/dot-type step-down piezoelectric transformer was manufactured by using Pb[(Mn$\sub$1/3/Sb$\sub$2/3)$\sub$0.05/Zr$\sub$0.475/Ti$\sub$0.475/]O$_3$ ceramics, which have excellent high-power piezoelectric properties. The characteristics of step-down piezoelectric transformer as a function of load resistance at output terminal was examined. Voltage gain was greatly dependent on drive frequency and load resistance, and showed maximum voltage gain at the resonance frequency. The output voltage was linearly increased as the input voltage increased. Voltage gain of the step-down piezoelectric transformer with respect to input voltage was very stable when the load resistance was in the range of 50-500 $\Omega$ .

  • PDF

A Study on the VFC type A/D Converter (VFC type A/D Converter에 관한 연구)

  • 김춘성;이종각
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.15 no.6
    • /
    • pp.87-90
    • /
    • 1978
  • In previous VFC type A/D converter high linearity charateristics knave been achieved to several hundred kHz, and in the converter with maximum output frequency of several MHz, the conversion linearity is poor in upper frequency range. In this paper the problem of the extension of the output frequency to MHz range is studied in the following two view points: First, a tunnel diode VCO is used to increase the output frequency range to several MHz. Second, the linearity between the input voltage and the frequency of the output pulse is accomplished by using negative pulse feedback circuit. From the experimental results, it was followed that the linearity of the proposed converter was about 0.209 percent at the frequency of 3.7MHz.

  • PDF

Design of a Converter for range finder (거리 측정을 위한 변환기의 설계)

  • 최진호;도태권;장윤석
    • Proceedings of the IEEK Conference
    • /
    • 2000.11b
    • /
    • pp.233-236
    • /
    • 2000
  • A new time-to-digital converter is designed and the converter is based on a voltage-to-frequency converter and a counter. The converter output is obtained without delay time and the resolution improves with increasing input time interval because the output of voltage-to-frequency converter increases linearly. In the designed circuit the input time intervals range is from 100nsec to 3${\mu}$ sec.

  • PDF

A study on the design of the A-D converter for analog rebalance loop in INS (관성측정장치의 아날로그 재평형 루프에 따르는 A-D 변환기의 설계에 관한 연구)

  • 안영석;김종웅;이의행
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10b
    • /
    • pp.522-527
    • /
    • 1987
  • This paper describes the hardware of analog-to-digital converter to process the rate output of analog servo loop for the gyro rebalance of INS. The analog-to-digital converter is designed by voltage-to-frequency method which is generally used in INS, and this scheme fits well into the strapdown INS that requires the wide dynamic range and linearity. The output of the designed voltage to frequency converter is tested by computer through the counter and all the factors which affect the performance are considered.

  • PDF

A 3-Bridge LLC Resonant Converter with Wide Input/Output Voltage Gain Characteristics (넓은 입·출력 전압이득 특성을 갖는 3 브리지 LLC 공진컨버터)

  • Yoo, Sang-Jae;Jang, Ki-Chan;Kim, Eun-Soo;Jeon, Yong-Seog;Kook, Yoon-Sang
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.2
    • /
    • pp.142-151
    • /
    • 2020
  • This paper presents a DC/DC LLC resonant converter with wide input/output voltage gain characteristics and its control method for efficiency improvement. For a wide input/output voltage gain characteristics without designing small transformer magnetization inductance, the proposed converter changes the topology into three modes of operation according to the main switch switching pattern. In each operating mode, variable LINK voltage modulation and frequency modulation were performed to control output voltage and improve operating efficiency. A prototype of a 5-kW DC/DC LLC resonant converter was built and tested to verify the validity and applicability of the proposed converter.