• Title/Summary/Keyword: Output coupled

Search Result 459, Processing Time 0.023 seconds

The Operating Characteristics of DBR-LD with Wavegudies Coupling Structure (도파로 결합 구조에 따른 DBR-LD의 동작특성)

  • 오수환;박문호
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.9
    • /
    • pp.666-672
    • /
    • 2003
  • In this paper, we described the fabrication and the performance of wavelength tunable distributed bragg reflector (DBR) laser diode (LD), having different waveguide coupling mechanisms; integrated-twin-guide (ITG) DBR-LD and butt coupled (BT) DBR-LD. This deviceis fabricated by metal organic vapor phase epitaxy (MOVPE) growth and planar buried heterostructure (PBH)-type transverse current confinement structure. The result of measurement, the optical performance of BT-DBR-LD is better over 2 times than that of ITG-DBR-LD at the variation of threshold current and output power, and slop efficiency due to the higher coupling efficiency of the butt coupled structure than the integrated twin guide structure. The maximum wavelength tuning range is about 7.2nm for ITG DBR-LD and 7.4nm for BT DBR-LD. Both types of lasers have a very high yield of single mode operation with a side-mode suppression ratio of more than 35dB.

Design of 256Kb EEPROM IP Aimed at Battery Applications (배터리 응용을 위한 1.5V 단일전원 256Kb EEPROM IP 설계)

  • Kim, Young-Hee;Jin, RiJun;Ha, Pan-Bong
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.10 no.6
    • /
    • pp.558-569
    • /
    • 2017
  • In this paper, a 256Kb EEPROM IP aimed at battery applications using a single supply of 1.5V which is embedded into an MCU is designed. In the conventional cross-coupled VPP (boosted voltage) charge pump using a body-potential biasing circuit, cross-coupled PMOS devices of 5V in it can be broken by the junction or gate oxide breakdown due to a high voltage of 8.53V applied to them in exiting the program or erase mode. Since each pumping node is precharged to the input voltage of the pumping stage at the same time that the output node is precharged to VDD in the cross-coupled charge pump, a high voltage of above 5.5V is prevented from being applied to them and thus the breakdown does not occur. Also, all erase, even program, odd program, and all program modes are supported to reduce the times of erasing and programming 256 kilo bits of cells. Furthermore, disturbance test time is also reduced since disturbance is applied to all the 256 kilo bits of EEPROM cells at once in the cell disturb test modes to reduce the cell disturbance testing time. Lastly, a CG driver with a short disable time to meet the cycle time of 40ns in the erase-verify-read mode is newly proposed.

Output Characteristics of the Longitudinally Pumped 946 nm Nd:YAG Laser with Laser Diode (반도체 레이저로 종펌핑하를 946 nm Nd:YAG 레이저의 출력 특성)

  • Park, Cha-Gon;Choo, Han-Tae;Kim, Gyu-Ug
    • Korean Journal of Optics and Photonics
    • /
    • v.18 no.4
    • /
    • pp.270-273
    • /
    • 2007
  • We have investigated the output characteristics of the 946 nm Nd:YAG laser which is longitudinally pumped by a fiber coupled laser diode. The temperature of a Nd:YAG crystal mount was kept constant by a controller with thermoelectric cooler. As a result, we measured more intense output at a low temperature, and then the maximum output power was measured to be 870 mW when the pumping power and the temperature were 9.95 W and $5^{\circ}C$, respectively. It appeared that output was decreased above 10 W pump power because of the thermal effects in gain medium.

A Reconfigurable Power Divider for High Efficiency Power Amplifiers (고효율 전력 증폭기를 위한 재구성성이 있는 전력 분배기)

  • Kim, Seung-Hoon;Chung, In-Young;Jeong, Jin-Ho
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.2
    • /
    • pp.107-114
    • /
    • 2009
  • In this paper, high efficiency amplifier configuration is proposed using the reconfigurable power divider. In order to enhance average efficiency of linear power amplifiers for wireless communication, it is required to increase efficiency in low output power region. The proposed power divider operates in two modes, high power mode and low power mode, according to output power. In each mode, it allows impedance matches and low loss, which is made possible by employing two $\lambda/4$ coupled lines and two switches. The fabricated power divider shows the return loss ($S_{11}$) and insertion loss ($S_{21}$) of -16.49 dB and -0.83 dB, respectively, in low power mode. In high power mode, the measured return loss ($S_{11}$) and insertion loss ($S_{31}$) are -16.28 dB and -0.73 dB, respectively. This result successfully demonstrates the reconfigurability of the proposed power divider.

A Fully Integrated Ku-band CMOS VCO with Wide Frequency Tuning (Ku-밴드 광대역 CMOS 전압 제어 발진기)

  • Kim, Young Gi;Hwang, Jae Yeon;Yoon, Jong Deok
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.12
    • /
    • pp.83-89
    • /
    • 2014
  • A ku-band complementary cross-coupled differential voltage controlled oscillator is designed, measured and fabricated using $0.18-{\mu}m$ CMOS technology. A 2.4GHz of very wide frequency tuning at oscillating frequency of 14.5GHz is achieved with presented circuit topology and MOS varactors. Measurement results show -1.66dBm output power with 18mA DC current drive from 3.3V power supply. When 5V is applied, the output power is increased to 0.84dBm with 47mA DC current. -74.5dBc/Hz phase noise at 100kHz offset is measured. The die area is $1.02mm{\times}0.66mm$.

Hexa-Band Hybrid MIMO Antenna for the Mobile Phone Surrounding Ground (접지에 둘러싸인 휴대폰을 위한 6중 밴드 하이브리드 MIMO 안테나)

  • Lee, Kyeong-Ho;Son, Taeho
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.4
    • /
    • pp.357-364
    • /
    • 2015
  • In this paper, we designed and implemented a PIFA(Planar Inverted F Antenna) + IFA(Inverted F Antenna) hybrid MIMO(Multi Input Multi Output) antenna for the hexa mobile communication service band. By the simultaneous operation both PIFA and IFA using the coupled feeding structure, we tried for application to modern mobile phones that have large ground size. A PIFA is applied to the ground area, and an IFA is applied to no ground small space on top of the phone. A diagonal fed MIMO antenna is implemented PCB embedded type without antenna carrier component. Implemented antenna on the bare board measured within 3 : 1 for VSWR under hexa mobile communication band as CDMA, GSM900, DCS, KPCS, USPCS, and WCDMA. Measured average gains and efficiencies were -5.19~-3.16 dBi and 30.27~48.26 % for the CDMA, GSM900 band, and -9.50~-5.19 dBi and 11.23~30.28 % for the DCS, KPCS, USPCS, WCDMA band. It's shown that studied antenna can be applied to the antenna for the modern mobile phone.

High-Efficiency Dual-Buck Inverter Using Coupled Inductor (결합 인덕터를 이용한 효율적인 단상 듀얼-벅 인버터)

  • Yang, Min-Kwon;Kim, Yu-Jin;Cho, Woo-Young
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.6
    • /
    • pp.396-405
    • /
    • 2019
  • Single-phase full-bridge inverters have shoot-through problems. Dead time is an essential way of solving these issues, but it distorts the output voltage and current. Dual-buck inverters are designed to eliminate the abovementioned problems. However, these inverters result in switching power loss and electromagnetic interference due to the diode reverse-recovery problem. Previous studies have suggested reducing the switching power loss from diode reverse-recovery, but their proposed methods have complex circuit configurations and high system costs. To alleviate the switching power loss from diode reverse-recovery, the current work proposes a dual-buck inverter with a coupled inductor. In the structure of the proposed inverter, the current flowing into the original diode is divided into a new diode. Therefore, the switching power loss is reduced, and the efficiency of the proposed inverter is improved. Simulation waveforms and experimental results for a 1.0 kW prototype inverter are discussed to verify the performance of the proposed inverter.

A High-Isolation MIMO Antenna with Dual-Port Structure for 5G Mobile Phones

  • Yang, Hyung-kyu;Lee, Won-Woo;Rhee, Byung-Ho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.4
    • /
    • pp.1458-1470
    • /
    • 2018
  • In this letter, a new dual-port Multiple-Input Multiple-Output (MIMO) antenna is introduced which has two independent signal feeding ports in a single antenna element to achieve smaller antenna volumes for the 5G mobile applications. The dual-port structure is implemented by adding a cross coupled semi-loop (CCSL) antenna as the secondary radiator to the ground short of inverted-F antenna (IFA). It is found that the port to port isolation is not deteriorated when an IFA and CCSL is combined to form a dual-port structure. The isolation property of the proposed antenna is compared with a polarization diversity based dual-port antenna proposed in the literature [9]. The operating frequency range is 3.3-4.0 GHz which is suitable for places where $4{\times}4$ MIMO systems are supposed to be deployed such as in China, EU, Korea and Japan at the band ${\times}$ (3.3 - 3.8GHz. The measured 6-dB impedance bandwidths of the proposed antennas are larger than 700 MHz with isolation between the feeding ports higher than 18 dB [1-2]. The simulation and measurement results show that the proposed antenna concept is a very promising alternative for 5G mobile applications.

Robust decentralized control of structures using the LMI Hcontroller with uncertainties

  • Raji, Roya;Hadidi, Ali;Ghaffarzadeh, Hosein;Safari, Amin
    • Smart Structures and Systems
    • /
    • v.22 no.5
    • /
    • pp.547-560
    • /
    • 2018
  • This paper investigates the operation of the $H_{\infty}$ static output-feedback controller to reduce dynamic responses under seismic excitation on the five-story and benchmark 20 story building with parametric uncertainties. Linear matrix inequality (LMI) control theory is applied in this system and then to achieve the desired LMI formulations, some transformations of the LMI variables is used. Conversely uncertainties due to material properties, environmental loads such as earthquake and wind hazards make the uncertain system. This problem and its effects are studied in this research. Also to decrease the transition of large amount of data between sensors and controller, avoiding the disruption of whole control system and economy problems, the operation of the decentralized controllers is investigated in this paper. For this purpose the comparison between the performance of the centralized, fully decentralized and partial decentralized controllers in uncoupled and coupled cases is performed. Also, the effect of the changing the number of stories in substructures is considered. Based on the numerical results, the used control algorithm is very robust against the parametric uncertainties and structural responses are decreased considerably in all the control cases but partial decentralized controller in coupled form gets the closest results to the centralized case. The results indicate the high applicability of the used control algorithm in the tall shear buildings to reduce the structural responses and its robustness against the uncertainties.

A Load Identification Method for ICPT System Utilizing Harmonics

  • Xia, Chen-Yang;Zhu, Wen-Ting;Ma, Nian;Jia, Ren-Hai;Yu, Qiang
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2178-2186
    • /
    • 2018
  • Online identification of load parameters is the premise of establishing a stable and highly-efficient ICPT (Inductive Coupled Power Transfer) system. However, compared with pure resistive load, precise identification of composite load, such as resistor-inductance load and resistance-capacitance load, is more difficult. This paper proposes a method for detecting the composite load parameters of ICPT system utilizing harmonics. In this system, the fundamental and harmonic wave channel are connected to the high frequency inverter jointly. The load parameter values can be obtained by setting the load equation based on the induced voltage of secondary-side network, the fundamental wave current, as well as the third harmonic current effective value received by the secondary-side current via Fourier decomposition. This method can achieve precise identification of all kinds of load types without interfering the normal energy transmission and it can not only increase the output power, but also obtain higher efficiency compared with the fundamental wave channel alone. The experimental results with the full-bridge LCCL-S type voltage-fed ICPT system have shown that this method is accurate and reliable.