• Title/Summary/Keyword: Output coupled

Search Result 459, Processing Time 0.021 seconds

Coupled Inductor Based Voltage Balancing in Dual-Output CLL Resonant Converter for Bipolar DC Distribution System (양극성 DC 배전 시스템 적용을 위한 결합 인덕터 기반의 전압 밸런싱 이중 출력 CLL 공진형 컨버터)

  • Lee, Seunghoon;Kim, Jeonghun;Cha, Honnyong
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.4
    • /
    • pp.348-355
    • /
    • 2022
  • A bipolar DC distribution system suffers from an imbalance in voltages when asymmetric loads are connected at the outputs. Dedicated voltage balancers are required to address the imbalance in bipolar voltage levels. However, additional components eventually increase the cost and decrease the efficiency and power density of the system. Therefore, to deal with the imbalance in output voltages without adding any extra components, this study presents a coupled inductor-based voltage balancing technique with a dual-output CLL resonant converter. The proposed coupled inductor does not require extra magnetic components to balance the output voltages because it is the result of resonant inductors of the CLL tank circuit. It can also avoid complex control schemes applied to voltage balancing. Moreover, with the proposed coupled inductor, the CLL converter acquires good features including zero voltage and zero current switching. Detailed analysis of the proposed coupled inductor is presented with different load conditions. A 3.6-kW hardware prototype was built and tested to validate the performance of the proposed coupled inductor-based voltage balancing technique.

Experimental and Parametric Study on the Output Coupled type Continuously Variable Transmission

  • Kim, Yeon-Su;Park, Jae-Min;Park, Sang-Hoon
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.3 no.3
    • /
    • pp.28-36
    • /
    • 2002
  • The continuously variable transmission (CVT) mechanism considered here is the output coupled type which combines the functions of a 2K-H I type differential gear unit and a V-belt type continuously variable unit (CVU). One shaft of the CVU is connected directly to the output shaft and another shaft of it is linked to the differential gear unit. It is shown that some fundamental relations (speed ratios, power flows and efficiencies) for twelve mechanisms previously described are valid by various experimental studies, six of them produce a power circulation and the others produce a power split. Parametric analysis is carried out in relation to the efficiency, speed ratio and power ratios in order to assist in the design of an optimum configuration. Some useful properties associated with power flow modes also are discussed in the output coupled type continuously variable transmission.

A Study on LLC Resonant Converter Employing Coupled Inductor to Reduce Output Current Ripple (커플드 인덕터를 활용하여 출력 전류 리플을 저감하는 LLC 공진형 컨버터에 관한 연구)

  • Lee, Yong-Chul;Kang, Min-Hyuck;Kang, Chan-Ho;Hong, Sung-Soo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.3
    • /
    • pp.208-216
    • /
    • 2018
  • In this paper, an LLC resonant converter employing two coupled inductors on the secondary side of the converter is proposed. The conventional LLC converter exhibits serious power loss during secondary winding of the transformer because of generation of tremendous output current ripples. To overcome this problem, an LLC resonant converter with a current doubler as a rectifying circuit was recently proposed. However, the current-doubler rectifying circuit requires coupled inductors with a high coupling ratio to retain the designed resonance characteristics. Therefore, an additional hardware filter is required at the output stage to address large output current ripples. Additional design procedures are also necessary because the inductance component of the added filter affects the designed resonant network. To solve this issue, an LLC resonant converter employing two coupled inductors is proposed in this paper. Mathematical analysis shows that the proposed secondary-side current-doubler circuit does not affect the designed resonance characteristics. The operating principles and theoretical analyses are proven through a simulation and experiments with a 54 V/28 A prototype.

Comparison of Two Layout Options for 110-GHz CMOS LC Cross-Coupled Oscillators

  • Kim, Doyoon;Rieh, Jae-Sung
    • Journal of electromagnetic engineering and science
    • /
    • v.18 no.2
    • /
    • pp.141-143
    • /
    • 2018
  • Two 110-GHz oscillators have been developed in 65-nm CMOS technology. To study the effect of layout on the circuit performance, both oscillators had the same LC cross-coupled topology but different layout schemes of the circuit. The oscillator with the conventional cross-coupled design (OSC1), showed an output power of -3.9 dBm at 111 GHz with a phase noise of -75 dBc/Hz at 1-MHz offset. On the other hand, OSC2, with a modified cross-coupled line layout, generated an output power of -2.0 dBm at 117 GHz with a phase noise of -77 dBc/Hz at 1-MHz offset. The result indicates that the optimized layout can improve key oscillator performances such as oscillation frequency and output power.

The study of the Asymmetrical Half-Bridge Converter With magnetic coupled post regulator

  • Hyeon, Byeong-Cheol;Cho, Bo-Hyung
    • Proceedings of the KIPE Conference
    • /
    • 2007.11a
    • /
    • pp.121-123
    • /
    • 2007
  • In this paper, a multiple-output converter using a coupledinductor is proposed. The Asymmetrical Half-Bridge Converter (AHBC), which is used as a master converter, obtains ZVS in the primary side switches. For the tight output voltage regulation of the slave output, the Secondary Side Post Regulator (SSPR) is adopted. The proposed magnetically coupled output filter inductor reduces the number of semi-conductor devices and magnetic components. Also, the circuit enables ZCS off switching in the SSPR MOSFET and rectifying diodes. The modes of operation which are caused by the coupled-inductor and post regulator are explained. The analyzed modes of operation of the proposed multiple-output converter are verified by the simulation and experimental results.

  • PDF

Design of Parallel-Operated SEPIC Converters Using Coupled Inductor for Load-Sharing

  • Subramanian, Venkatanarayanan;Manimaran, Saravanan
    • Journal of Power Electronics
    • /
    • v.15 no.2
    • /
    • pp.327-337
    • /
    • 2015
  • This study discusses the design of a parallel-operated DC-DC single-ended primary-inductor converter (SEPIC) for low-voltage application and current sharing with a constant output voltage. A coupled inductor is used for parallel-connected SEPIC topology. Generally, two separate inductors require different ripple currents, but a coupled inductor has the advantage of using the same ripple current. Furthermore, tightly coupled inductors require only half of the ripple current that separate inductors use. In this proposed work, tightly coupled inductors are used. These produce an output that is more efficient than that from separate inductors. Two SEPICs are also connected in parallel using the coupled inductors with a single common controller. An analog control circuit is designed to generate pulse width modulation (PWM) signals and to fulfill the closed-loop control function. A stable output current-sharing strategy is proposed in this system. An experimental setup is developed for a 18.5 V, 60 W parallel SEPIC (PSEPIC) converter, and the results are verified. Results indicate that the PSEPIC provides good response for the variation of input voltage and sudden change in load.

Characteristics on the Output Coupled Type CVT Combined Differential Gear Unit (차동기어장치를 적용한 출력축 연결방식 무단변속기의 특성해석에 관한 연구)

  • Choi, Sang-Hoon;Kim, Yeon-Su
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.3
    • /
    • pp.205-215
    • /
    • 2001
  • Continuously variable transmission(CVT) mechanisms considered here combine the functions of a 2K-H I type differential gear unit and a V-belt continuously variable unit(CVU). One shaft of the V-belt CVU is connected directly to the differential gear unit and remaining shaft of it is linked to the output shaft. These mechanisms have many advantage which are the decrease of CVT size, the increase of overall efficiency, the extension of speed ratio range, and the generation of geared neutral. In this paper six different mechanisms of output coupled type CVT are proposed. Some useful theoretical formula related to speed ratio, power flow and efficiency are derived and analyzed, and theoretical analysis are proven by various experiments.

  • PDF

New UWB BPF with Steep Selectivity Based on T-Resonator and Capacitively Coupled λ/4 and λ/2 Line Sections

  • Duong, Thai Hoa;Kim, Ihn-Seok
    • Journal of electromagnetic engineering and science
    • /
    • v.9 no.3
    • /
    • pp.164-173
    • /
    • 2009
  • In this paper, two new circuit structures for European and U.S. ultra-wide band(UWB) bandpass filters(BPFs) with sharp roll-off characteristics are introduced. We show first that the ultra-wide bandpass property is obtained from a $\lambda$/4 open T resonator with a capacitively coupled $\lambda$/4 short-circuited line, which provides two attenuation poles at lower and upper cutoff frequencies. Then, two identical capacitively coupled input/output lines, which can be $\lambda$/4-length open ends or $\lambda$/2-length short ends, with the T-resonator, are adopted to suppress lower and higher frequency components outside of the pass band. There is coupling between the input and output lines providing two additional transmission zeros in the lower and upper transition bands of the filter. Since the coupling between the T-resonator with the $\lambda$/4 short-circuited line and the input/output lines limits the bandwidth of the filter to the European UWB band, both the $\lambda$/4 short-circuited line and the input/output lines are inserted between the two stacked T-resonators for the U.S. UWB band. The filter structures are simulated with ADS and HFSS and realized with low-temperature co-fired ceramic(LTCC) green tape which has the dielectric constant of 7.8. Measurement results agree well with HFSS simulation results.

Analysis and Design of Coupled Inductors for Two-Phase Interleaved DC-DC Converters

  • Lee, Jong-Pil;Cha, Honnyong;Shin, Dongsul;Lee, Kyoung-Jun;Yoo, Dong-Wook;Yoo, Ji-Yoon
    • Journal of Power Electronics
    • /
    • v.13 no.3
    • /
    • pp.339-348
    • /
    • 2013
  • Multiphase dc-dc converters are widely used in modern power electronics applications due to their advantages over single-phase converters. Such advantages include reduced current stress in both the switching devices and passive elements, reduced output current ripple, and so on. Although the output current ripple of a converter can be significantly reduced by virtue of the interleaving effect, the inductor current ripple cannot be reduced even with the interleaving PWM method. One way to solve this problem is to use a coupled inductor. However, care must be taken in designing the coupled inductor to maximize its performances. In this paper, a detailed analysis of a coupled inductor is conducted and the effect of a coupled inductor on current ripple reduction is investigated extensively. From this analysis, a UU core based coupled inductor structure is proposed to maximize the performance of the coupled inductor.

High Efficiency Step-Down Flyback Converter Using Coaxial Cable Coupled-Inductor

  • Kim, Do-Hyun;Park, Joung-Hu
    • Journal of Power Electronics
    • /
    • v.13 no.2
    • /
    • pp.214-222
    • /
    • 2013
  • This paper proposes a high efficiency step-down flyback converter using a coaxial-cable coupled-inductor which has a higher primary-secondary flux linkage than sandwich winding transformers. The structure of the two-winding coaxial cable transformer is described, and the coupling coefficient of the coaxial cable transformer and that of a sandwich winding transformer are compared. A circuit model of the proposed transformer is also obtained from the frequency-response curves of the secondary short-circuit and of the secondary open-circuit. Finally, the performance of the proposed transformer is validated by the experimental results from a 35W single-output flyback converter prototype. In addition, the proposed two-winding coaxial transformer is extended to a multiple winding coaxial application. For the performance evaluation of the extended version, 35W multi-output hardware prototype of the DC-DC flyback converter was tested.